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Abstract

This paper investigates the dynamic effects of weather shocks on economic activity

in Europe’s three largest economies: Germany, France, and Italy. We develop a

novel approach to measuring country-level exposure to abnormal weather, based on

grid-level data weighted by economic activity. We construct five harmonized weather

indices—heat, cold, drought, precipitation, and wind—and, using a Bayesian SVAR

framework, assess their impact on output and prices across major sectors: energy, con-

struction, manufacturing, and services. The results show that weather shocks have

both direct and indirect effects on economic activity, with substantial heterogeneity

across shock types and production sectors.
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1 Introduction

What are the macroeconomic impacts of weather shocks? Are these effects confined to

sectors that are directly exposed to climatic conditions, or do indirect spillovers throughout

the broader economy also play a significant role? Furthermore, to what extent does the

type of weather shock shape the nature and magnitude of these effects? We investigate

these issues by proposing a novel approach to measuring country-level exposure to abnormal

weather and analyzing the macroeconomic effects of five distinct types of shocks—cold, heat,

drought, precipitation, and wind—within a Bayesian Vector Auto-Regression framework.

The complex interplay between economic activity and climate is widely acknowledged

in the economic literature, with substantial agreement that economic activity contributes

to long-term impacts on the climate (see, e.g., Nordhaus, 1991 for a seminal theoretical

contribution). In contrast, there is less consensus regarding the extent to which weather

events influence economic activity and on the channels of transmission through which these

effects may materialize. While much of the existing literature has focused on temperature-

largely due to the accessibility of extensive temperature data-recent studies have begun to

expand the focus to other weather events and to increasingly utilize composite indices to

capture the broader macroeconomic implications of weather, particularly in the context of

the United States (Kim et al., 2025).

In this paper, we construct novel indices of exposure to abnormal weather for the three

largest European economies—Germany, France, and Italy.1 Using high-resolution grid-cell

weather data, we compute deviations from historical, calendar-specific averages and weight

them by proxies of economic activity. This approach preserves spatial heterogeneity, limits

the dilution of offsetting local effects, and captures regional variation in exposure based on

the geographic distribution of economic activity. We then use the resulting monthly indices

to analyze the effects of weather shocks on sectoral output and prices. Finally, we show that

composite indices may conceal important heterogeneity in both the nature and impact of

shocks, underscoring the need to examine distinct shocks separately to uncover key economic

mechanisms.

Assessing these effects is important because, as weather shocks become more frequent and

intense due to climate change, policymakers must develop strategies to enhance economic

resilience and adaptation capacity. Accurately measuring exposure to abnormal weather

conditions is a crucial step toward informing targeted responses. Moreover, understand-

ing the differentiated impacts of distinct weather shocks—including their direct and indirect

1The weather shock indices are available here. The dataset includes standardized exposure measures for
several European countries, including those analyzed in this paper.
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effects across sectors—is essential for designing effective, context-specific policy interventions.

Preview of main results. Leveraging our novel weather shock indices, we find that ab-

normal weather exerts significant and heterogeneous macroeconomic effects, transmitted

through both direct and indirect channels. These effects differ substantially across sectors

and countries. The construction sector is the most directly exposed: cold and wind shocks

reduce activity, while heat shocks generate contrasting responses—stimulating construction

in colder northern economies such as Germany but dampening it in warmer southern coun-

tries like Italy, consistent with a latitude-dependent effect. The energy sector is influenced

through both demand and supply mechanisms: cold shocks raise heating demand, while

wind affects electricity generation costs, underscoring the sector’s dual sensitivity to weather

conditions. Manufacturing is less directly exposed but remains vulnerable through indirect

spillovers, particularly via weather-induced energy price fluctuations. Overall, these findings

highlight the importance of distinguishing weather shocks by type and sector to uncover

transmission channels that composite indices may hide.

This study also presents, to the best of our knowledge, the first empirical analysis of

the effects of weather shocks on services in European countries. While the overall response

across the sector is limited, several sub-sectors display significant sensitivity to heat shocks.

These patterns are consistent with demand complementarities with construction, as output

and prices in related services often move together with construction activity.

A comprehensive series of sensitivity checks indicates that our results are robust across

several dimensions and that there are no significant cross-country spillovers. We further test

for potential non-linearities in the effects of weather shocks-as observed with other macroe-

conomic shocks (see, e.g., Caggiano et al., 2022)-focusing on differences across business cycle

phases (Billio et al., 2020) and seasonal variation.

Related literature and contribution. A substantial macroeconometric literature has

examined the aggregate dynamic effects of structural shocks on the economy (e.g., seminal

papers include Romer and Romer, 2004 on monetary policy shocks, Bloom, 2009 on uncer-

tainty shocks, and Ramey, 2011 on government spending and fiscal shocks). We contribute to

this literature by examining the macroeconomic dynamic impact of weather-related shocks.

In recent years, interest in these shocks has intensified as climate hazards have become more

frequent, more severe, and increasingly persistent. Such impacts have been documented

across a range of domains, including health, agriculture, tourism, employment, sales, and

overall macroeconomic activity (see, e.g., Bigano et al., 2005; Tol, 2009; Dell et al., 2012;

Wilson, 2019; Roth Tran, 2020; Vicedo-Cabrera et al., 2021; Ballester et al., 2023; Kim
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et al., 2025; Bilal and Känzig, 2024).

A key distinction in the literature is between “climate,” defined as the joint probability

distribution of atmospheric states (Dell et al., 2012; Hsiang, 2016), and “weather,” denot-

ing realizations of this distribution. Seminal theoretical contributions have focused on cli-

mate, particularly through integrated assessment models (e.g., Nordhaus, 1993; Hassler and

Krusell, 2018), while more recent empirical work has turned to weather fluctuations. In this

paper, we analyse large deviations from seasonal averages—referred to as abnormal weather

conditions—and their temporal variation. This focus differs from studies of extreme weather

events typically classified as natural disasters (e.g., hurricanes or floods). For instance, Strobl

(2011) and Felbermayr and Gröschl (2014) examine their effects on economic activity, while

Kruttli et al. (2023) and Ferriani et al. (2024) study financial consequences. We instead

consider deviations from long-run seasonal norms because, although less catastrophic, such

anomalies occur more frequently and can generate persistent, widespread economic effects.

By analysing these recurrent shocks, we capture a broader range of weather-related dis-

ruptions relevant for aggregate fluctuations and sectoral spillovers, offering insights often

overlooked in studies limited to rare, extreme events.

Within the empirical literature, two main econometric approaches have been adopted.

Panel regressions offer the advantage of high geographical resolution and large samples,

and have been employed by Starr (2000), Bigano et al. (2005), Bloesch and Gourio (2015),

Wilson (2019), Billio et al. (2020), and Kotz et al. (2022), among others. However, they

are limited in capturing the dynamic effects of weather shocks over time, which is crucial

for assessing whether such effects are persistent or transitory. Moreover, panel regressions

are often ill-suited when heterogeneity across units is substantial. In contrast, Structural

Vector Autoregressive models effectively trace dynamic responses through impulse response

functions (see, e.g., Ciccarelli et al., 2023; Kim et al., 2025). In this study, we employ a SVAR

framework with Bayesian estimation techniques, which enhance stability when working with

large datasets (Bańbura et al., 2007; Giannone et al., 2015). This approach allows us to

recover dynamic responses while also estimating sectoral effects.

Several papers have examined the agricultural sector, arguably the most directly exposed

to weather shocks. Evidence shows that adverse conditions reduce output and raise prices

(see, e.g., Ciscar et al., 2011; Gallic and Vermandel, 2020). More recently, the literature has

expanded to other sectors that may be impacted, with particular emphasis on the channels

through which severe weather influences the broader business cycle (Graff Zivin & Neidell,

2014; Arent et al., 2015; Bloesch & Gourio, 2015; Donadelli et al., 2017; Wilson, 2019;

Roth Tran, 2022; Downey et al., 2023; Kim et al., 2025). We contribute to this growing field

by analyzing sectoral output and prices in manufacturing, energy, and construction, and by
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providing, to our knowledge, the first empirical analysis of services in European countries.

A large literature examines whether weather shocks operate through demand or supply

channels. Several studies highlight supply-side mechanisms, where adverse conditions nega-

tively affect production factors (Burke et al., 2005; Deryugina & Hsiang, 2014; Graff Zivin

& Neidell, 2014; Donadelli et al., 2017; Kalkuhl & Wenz, 2020; Baleyte et al., 2024). Wilson

(2019) and Bloesch and Gourio (2015) further show that employment growth is highly sen-

sitive to weather fluctuations. Other work emphasizes demand-side channels: Ciccarelli and

Marotta (2021) demonstrate that physical risks act as negative demand shocks, Roth Tran

(2022) show that weather shocks are transmitted through consumer demand, and Bigano

et al. (2005) find that tourism is positively correlated with temperature. Auffhammer and

Mansur (2014) provides a comprehensive review of the empirical relationship between cli-

mate conditions and energy consumption. Our results suggest that weather shocks operate

through both demand and supply channels. Cold and wind shocks reduce construction out-

put, while heat shocks stimulate it, particularly in Northern Europe. The energy sector is

affected through both channels: cold weather raises heating demand, while wind influences

supply by altering electricity generation costs.

Finally, our results are consistent with previous studies documenting substantial hetero-

geneity in the effects of weather shocks across both sectors (Parnaudeau & Bertrand, 2018;

Acevedo et al., 2020) and countries (Billio et al., 2020; Olper et al., 2021). In particular,

we find evidence of a latitude effect: the construction sector is highly sensitive to weather

shocks, with cold temperatures and wind reducing activity, while heat shocks have positive

effects in northern countries like Germany but negative effects in southern countries such as

Italy.

Outline. The remainder of the paper is organised as follows. Section 2 describes the con-

struction of the weather indices and the macroeconomic data used in the analysis. Section

3 presents the empirical strategy and econometric methodology. Section 4 reports the em-

pirical findings. Finally, Section 5 concludes. Additional figures, robustness checks, and

technical details are provided in the Supplemental Appendix.

2 Data

We construct a set of novel weather indices to capture exposure to abnormal weather,

which we can interpret as macroeconomic shocks (Ramey, 2016). We then analyze their

transmission to key sectors—manufacturing, energy, construction, and services—using data

on sectoral output, producer prices, and consumer prices. The analysis also incorporates
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standard macroeconomic indicators, including unemployment and short-term interest rates.

Our empirical investigation is based on a monthly panel covering January 1990 to December

2019.

2.1 Weather data

We construct indices of abnormal deviations across five weather dimensions: cold, heat,

drought, precipitation, and wind. This reflects growing recognition that economic activity

responds to a broader set of conditions beyond temperature, which has traditionally domi-

nated the empirical literature (see, e.g., Burke et al., 2005; Acevedo et al., 2020; Lucidi et al.,

2022; Natoli, 2022; Bilal and Känzig, 2024). Recent studies have proposed composite mea-

sures—such as the ACI2 for North America—that integrate multiple weather variables (Kim

et al., 2025). Following this approach, we develop a Composite Weather Index (CWI) by ag-

gregating the five components into a unified measure of overall abnormal weather. While the

CWI provides a convenient summary of weather variability, we show that such aggregation

can mask the heterogeneous effects and transmission channels of individual shocks.

A key challenge lies in determining how to construct the weather shocks. Our approach

is guided by the objective of accurately capturing a country’s economic exposure to abnor-

mal weather conditions, while ensuring comparability across countries and across different

types of weather shocks. First, we leverage high-resolution gridded weather data to com-

pute abnormal deviations at the grid-cell level, which we then aggregate to the country

level—the relevant unit of analysis for our study. This approach mitigates the risk of aggre-

gation bias that arises when offsetting weather conditions across regions within a country

are averaged out. Second, in aggregating grid-level data, we weight by proxies of economic

activity, following Gortan et al. (2024). This ensures that regions with greater economic

relevance contribute proportionally more to the country-level index.3 Failing to account for

the geographical distribution of economic activities may lead to biased estimates of the eco-

nomic effects of weather. Third, we adopt a harmonized methodology across all five weather

dimensions-cold, heat, drought, precipitation, and wind-ensuring consistency in measure-

ment and facilitating a coherent comparative analysis across types of shock.

We construct each of our weather indices in the following manner. Let Wc,d denote the

2American Academy of Actuaries (2016).
3For example, abnormal weather in the industrialized North of Italy is likely to have a stronger impact

on aggregate outcomes than in the less industrialized South. In addition, computing deviations at the grid-
cell level before aggregation helps mitigate aggregation bias: if Northern Italy experiences unusually cold
temperatures while Southern Italy experiences unusually hot temperatures in the same month, the economic
impact is the sum of both regional effects, rather than the effect of the average temperature at the country
level.
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daily weather variable of interest-such as average temperature or total precipitation-at grid

cell c on day d.

1. Detrending. Following Parnaudeau and Bertrand (2018), we detrend Wc,d to avoid

negative (positive) deviations being clustered at the start of the sample and positive

(negative) deviations at the end of the sample in the presence of climate time trends.

2. Threshold computation. For each grid cell, we compute calendar-month-specific

percentilesWc,t̃, which serve as exceedance thresholds. We favor month-specific thresh-

olds to account for strong seasonal patterns in weather data, while avoiding the noise

associated with day-specific values. This also achieves seasonal adjustment by con-

struction.

3. Exceedance value. For each calendar month, we compute the cumulative value of

observations exceeding the corresponding threshold:

WMc,m,y =
Dm∑
d=1

Wc,d1{Wc,d ≥ Wc,t̃},

where Dm denotes the number of days in a calendar month m, y indexes the year,

and 1{.} is an indicator function equal to 1 when the daily observation is above the

respective month-specific threshold.

4. Spatial aggregation. We then aggregate grid-cell-level exceedance values to the

country level using weights based on proxies for economic activity and administrative

boundaries from the GADM dataset, following Gortan et al. (2024). We use nocturnal

light intensity (Li et al., 2020) as the preferred proxy over alternative weights.4 The

aggregated index for country C is denoted WMC
m,y.

5. Standardization. Finally, we standardize the index using month-specific standard

deviations W̄C
m :

WMC
m,y

σCm
.

This step adjusts for seasonal variability in weather conditions, allowing for meaningful

comparisons across time and across weather variables.

Analogous to the ACI for North America, the CWI is then constructed as the unweighted

average of the five individual weather shock components: cold, heat, drought, precipitation,

4This is not a substantive choice as the other weighting schemes discussed in Gortan et al. (2024) give
very similar results.
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and wind. Figure 1 displays the country-specific CWIs for Germany, France, and Italy,

along with their smoothed versions based on a five-year moving average. The disaggregated

weather components underlying each country’s CWI are shown in Supplemental Appendix

A, in Figures A16, A17, and A18, respectively. The Supplemental Appendix also provides

further details on the computation of the weather shocks and the underlying data sources.

Constructing weather shocks in this manner offers several advantages. First, seasonal

adjustment-crucial when working with weather variables-is achieved by construction. Second,

the resulting series are effectively standardized, facilitating interpretation and cross-country

comparison.5 From an economic perspective, measuring deviations from calendar-month-

specific historical averages allows us to focus on the effects of abnormal weather conditions-

conceptually similar to deviations from a steady state. Moreover, focusing on large deviations

is particularly relevant, as these are less likely to be anticipated by economic agents and

thus harder to incorporate into decision-making processes prior to their realization. The

monthly frequency at which we construct our shocks is important in this regard, and it also

supports the assumption of exogeneity of weather shocks with respect to the macroeconomic

variables considered in our analysis.6 Furthermore, our shock measures have the desirable

property of capturing not only isolated extreme events but also the accumulation of multiple,

economically relevant deviations occurring within the same month. While a single large

weather event might be mitigated by adaptive behavior, repeated abnormal conditions over

a short period are more likely to disrupt economic activity (Natoli, 2022).

How should we interpret the dynamic responses of sectoral output and prices to these

shocks? We consider a scenario in which a country experiences a month of unusually intense

weather-defined as one standard deviation above its typical seasonal average. Because the

shocks are standardized, the resulting estimates are comparable across countries and types

of weather events, while still reflecting each country’s own historical climate patterns.

Supplemental Appendix B outlines the relationship between our weather indices and those

previously proposed in the literature. We conduct several robustness checks to validate our

findings and the construction of the weather shocks, as detailed in Supplemental Appendix

D. These include alternative constructions of the shocks, different percentile thresholds, a

falsification test, and comparisons with alternative country-level aggregation methods. We

also show that our results are not driven by natural disasters, drawing on data from the EM-

DAT International Disaster Database. Across all exercises, the main results remain robust,

reinforcing the validity of our identification strategy and interpretation of the shocks.

5Month-specific standardization yields a series with unit standard deviation, analogous to conventional
standardization procedures.

6Forecast accuracy for temperature and other weather variables tends to deteriorate rapidly with forecast
horizon, even when using state-of-the-art models. See, e.g., Lopez-Gomez et al. (2023).
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Figure 1: Composite Weather Indices for Germany, France and Italy.
Positive values in red and negative values in blue. The solid black line is
a 5-year moving average.
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2.2 Aggregate and sectoral economic data

The aggregate macroeconomic variables used in the empirical analysis include the unem-

ployment rate and the ECB’s main refinancing rate, proxied by the three-month Euribor. We

also incorporate a broad set of sectoral production indices from Eurostat, classified according

to NACE Rev.2. Specifically, we cover sectors from Section B to Section N, excluding Sec-

tion K (financial and insurance activities). As listed in Table 1, these include Manufacturing

(C); Electricity, gas, steam and air conditioning supply (D); Construction (F); Wholesale

and retail trade (G); Transportation and storage (H); Accommodation and food services (I);

Information and communication (J); Real estate activities (L); and Administrative and sup-

port services (N). Due to data limitations, monthly indicators for service sectors (G to N) are

only available for France. We exclude Section A (agriculture), which-despite its relevance in

the literature on weather shocks-lacks consistent monthly coverage. From Eurostat, we also

Section

C MANUFACTURING
D ELECTRICITY, GAS, STEAM AND AIR CONDITIONING SUPPLY
F CONSTRUCTION
G WHOLESALE AND RETAIL TRADE; REPAIR OF MOTOR VEHICLES AND MOTORCYCLES
H TRANSPORTATION AND STORAGE
I ACCOMMODATION AND FOOD SERVICE ACTIVITIES
J INFORMATION AND COMMUNICATION
L REAL ESTATE ACTIVITIES
N ADMINISTRATIVE AND SUPPORT SERVICE ACTIVITIES

Table 1: Sections from NACE Rev.2

collect producer price indices for sectors C (Manufacturing) and D (Electricity, gas, steam

and air conditioning supply),7 along with consumer price indices for energy and services.8

3 Econometric approach

Our econometric analysis aims to estimate impulse response functions (IRFs) for each

weather shock. For baseline estimation, we employ Structural Vector Autoregressions (SVARs)

and use Local Projections (LPs) (Jordà, 2005) to assess potential nonlinearities in shock

transmission.

7For sector F (Construction), the producer price index is available only at annual frequency.
8SERV: Services (overall index excluding goods); NRG: Energy, from the Eurostat prc hicp midx dataset.
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3.1 SVAR modelling

Consider the following structural VAR(p) model:

B0yt = B1yt−1 + · · ·+Bpyt−p +wt, (1)

where yt is a vector containing the endogenous variables in the following order: weather

index, sectoral production indicators, producer and consumer prices, unemployment rate,

and short-term interest rates. The vector wt is a vector of structural shocks. The model is

“structural” because the elements of wt are mutually uncorrelated, i.e. E(wtw
′
t) = Σw is

diagonal. Since the matrices B0 and wt are generally unobserved, we rely on the reduced-

form representation to estimate the model:

yt = B−1
0 B1yt−1 + · · ·+B−1

0 Bpyt−p +B−1
0 wt

= A1yt−1 + · · ·+Apyt−p + ut,

where we estimate the reduced-form parameters A1, . . . ,Ap,Σu, and the reduced-form resid-

uals ut using Bayesian methods. Following Giannone et al. (2015), we implement standard

Minnesota, sum-of-coefficients, and dummy-initial-observations priors. Technical details are

provided in Supplemental Appendix C. The key equation linking the reduced-form innova-

tions to the structural shocks is:

ut = B−1
0 wt. (2)

Our objective is to identify the effects of a weather shock on the system, which corresponds

to recovering the relevant column of the impact matrix B−1
0 . This is achieved via a Cholesky

decomposition of Σu, using the predefined ordering of variables. This identification strategy

implies that economic variables do not contemporaneously affect severe weather outcomes

within the same month. However, the longer-term dynamics of the system may allow for

feedback from economic conditions to weather-related variables over time.

3.2 Non-linear Local Projections

As an alternative to Vector Autoregressive (VAR) models, Jordà (2005) proposed the Lo-

cal Projection (LP) approach for estimating impulse response functions. This method offers a

flexible estimation framework, particularly well-suited for incorporating non-linearities. LPs

directly estimate the IRFs for a variable of interest xt using a sequence of horizon-specific
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regressions of the form:

xt+h = ch + βhνt + Γh(B)yt−1 + uht+h for h = 0, 1, · · · , H, (3)

where νt denotes a weather shock of interest, and yt is a vector of control variables similar

to those included in the SVAR specification in equation (1). This specification allows us to

estimate the dynamic response of xt+h to a weather shock νt, conditional on past information

in yt−1. βh represents the response of xt+h to a shock occurring at time t, and the IRF is

given by the sequence of estimated coefficients βh
H
h=0.

The local projection equation (3) can be extended to a non-linear framework by allowing

for the existence of two distinct regimes, each associated with different parameter values. To

estimate these regime-specific parameters, we interact the regressors on the right-hand side

of equation (3) with regime-switching probabilities. Specifically, we multiply the regressors

once by (1− F (s)), interpreted as the probability of the economy being in the first regime,

and once by F (s), the probability of being in the second. This regime-dependent structure

yields the following non-linear, horizon-specific specification:

xt+h = (1−F (st−1))[c
h
1+β1,hνt+Γ1,h(B)yt−1]+F (st−1)[c

h
2+β2,hνt+Γ2,h(B)yt−1]+u

h
t+h. (4)

The F (.) function maps real values to the interval [0, 1] and a customary choice is the logistic

function:

F (st) =
e−γŝt

1 + e−γŝt
, ŝt =

st − µ

σ
(5)

where st denotes the transition variable used to differentiate between regimes in which po-

tential non-linear effects are estimated, while µ and σ represent its mean and standard

deviation, respectively. For instance, when st is specified as a business cycle indicator, the

transition function F (st) approaches zero during downturns (regime 1) and one during ex-

pansions (regime 2). The resulting estimates yield impulse response functions to the weather

shocks conditional on each regime.

4 Results

This section presents the results of our empirical analysis based on the data and models

described above. We begin by examining the impact of individual weather shocks—heat,

cold, drought, precipitation, and wind—on sectoral production and prices, and then compare

these with the dynamic effects of the Composite Weather Index. We then present additional

results on the services sector, explore potential non-linearities, and assess the presence of

12



cross-country spillovers. The analysis focuses on the three largest economies in Europe:

Germany, France, and Italy. Since the response variables are expressed as year-on-year

growth rates, the estimated IRFs indicate whether a variable grows at a faster or slower rate

relative to its counterfactual path in the absence of the shock, over a 12-month horizon.

4.1 Weather-specific shocks

To enable cross-country and cross-sector comparisons, and to assess the time required for

variables to return to baseline levels, we report both impact and cumulative IRFs at selected

horizons. Where relevant for illustrating key features of the transmission of the shocks, we

also present selected IRFs in extended form. The analysis focuses on the responses of three

sectoral outputs, along with sectoral prices—specifically, manufacturing and energy producer

prices, as well as the energy component of consumer prices.

4.1.1 Cold shock

Figure 2 presents the impact responses and the cumulative effects at the 3- and 6-month

horizons following a cold shock across all countries. A number of regularities emerge. The

construction sector exhibits an immediate decline in output, which persists in the short term

but starts recovering after a few months. This transitory contraction is likely driven by the

direct effects of adverse weather conditions that impede construction activity.

Figure 2: Impact (red) and cumulative responses at 3 months (green) and
6 months (blue) to a cold shock, with 68% and 90% confidence intervals
shown as black and gray whiskers, respectively.

The energy sector is substantially affected by a cold shock, with production increasing

persistently across countries. While producer price indices exhibit only mild and statisti-
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cally insignificant increases, consumer prices respond significantly, albeit with a lag. To

examine the transmission mechanism in greater detail, we present selected extended impulse

responses, which shed light on how the shock propagates through the economy via the en-

ergy sector (see Figure 3). Following a one standard deviation cold shock, energy production

in France registers the largest impact response, increasing by more than 1.5%. Italy and

Germany also experience positive responses, with increases of approximately 1% and 0.8%,

respectively. The dynamics are broadly similar across the three countries, with the IRFs

reverting to the baseline level within five months. Consumer prices respond significantly,

peaking within four months of the shock. In contrast, producer prices adjust more slowly.

Energy Production DEU Energy Production FRA Energy Production ITA

Energy PPI DEU Energy PPI FRA Energy PPI ITA

Energy HICP DEU Energy HICP FRA Energy HICP ITA
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Figure 3: Impulse responses of output and prices of the energy sector to
a cold shock, with 68% and 90% confidence intervals in shades of blue.
The responses are presented for Germany (left column), France (middle
column), and Italy (right column).

Although increases are observed in all countries, the response is statistically significant only

in France on impact.
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These findings point to a demand for heating channel. A cold temperature shock raises the

demand for heating, which in turn drives up energy production and leads to higher energy

prices. This interpretation is consistent with the results of Lucidi et al. (2022) regarding

price dynamics, as well as with Colombo and Toni (2024), who examine the transmission

of gas price shocks within the European economy. The mild reaction in producer prices

that we observe likely reflects the nature of long-term contracts between companies and

energy suppliers, making companies less sensitive to sharp movements in prices compared

to households. Indeed, these contracts often fix prices for a set period, shielding companies

from immediate fluctuations in energy costs. This reduced sensitivity to price changes,

compared to households, is a result of contractual agreements that typically lock in rates, thus

insulating companies from market volatility (see, e.g., McKinsey, 2021). The simultaneous

upward movement of both output and prices suggests that the primary transmission channel

is indeed a demand shock.

Finally, output in the manufacturing sector does not exhibit a statistically significant

response (see again Figure 2). In contrast, producer prices show a mild but statistically in-

significant increase, possibly reflecting higher energy costs—a key input in the manufacturing

process.

4.1.2 Heat shock

The impact and cumulated responses to a heat shock are presented in Figure 4. The

overall dynamics broadly evolve in the opposite direction to those observed following a cold

shock, though with some key differences. A heat shock leads to a substantial increase in

construction output in Germany, a milder rise in France, and no significant effect in Italy.

These findings underscore the sensitivity of the construction sector to weather conditions,

given its reliance on outdoor activity. A heat shock tends to support production in Northern

European countries such as Germany, while it has more adverse effects in Southern Euro-

pean countries. This geographic contrast is well documented in the empirical literature. The

impact of temperature shocks varies systematically with latitude, resulting in heterogeneous

effects across regions. Kalkuhl and Wenz (2020) provide evidence that changes in annual

mean temperatures affect regional economic output in a non-linear fashion, with tempera-

ture increases generally boosting gross regional product in colder regions and reducing it in

warmer ones (see also Billio et al., 2020). Further studies highlight that temperature shocks

primarily influence the labor supply of workers in weather-exposed sectors. For instance,

Graff Zivin and Neidell (2014), using U.S. data, show that high daily temperatures lead to

reductions in labor supply among outdoor workers.

Energy production is again impacted via the heating demand channel, with both output

15



and prices responding in the same direction. However, the responses are generally less

significant than those observed following a cold shock. In particular, the effects are not

statistically significant in Germany and Italy. Although a heat shock might be expected to

Figure 4: Impact (red) and cumulative responses at 3 months (green) and
6 months (blue) to a heat shock, with 68% and 90% confidence intervals
shown as black and gray whiskers, respectively.

raise energy demand through increased use of air conditioning, its overall impact on energy

consumption in Europe remains limited. This is primarily because air conditioning is less

prevalent and less intensively used than heating across most European countries.9

Finally, we find that manufacturing output increases with a lag across all countries, al-

though the effect is only marginally significant in the case of France. To investigate the

potential indirect effects of weather shocks on the manufacturing sector—operating through

changes in prices in the energy sector—we present the full dynamics of selected impulse

response functions in Figure 5. This figure shows the effects of a heat shock, which leads

to a significant and immediate decline in energy demand, displayed by a reduction in both

production and producer prices across all countries. The reduction is primarily driven by

lower household heating demand, particularly via natural gas (Colombo & Toni, 2024). Con-

sequently, energy prices for producers drop, leading to lower input costs for manufacturing

and an increase in manufacturing output. The effect on manufacturing is observed across all

countries, with production rising by approximately 0.2 to 0.3 percentage points and exhibit-

ing significant persistence. The peak of the IRFs for manufacturing output occurs between

9 and 15 months after the initial shock. This increase in overall activity is also reflected in

9Air conditioning represents only roughly 1.2% of household electricity consumption in the EU (Source:
Odyssee-Mure, figure for 2021). Furthermore, the heating degree days are many more than the cooling
degree days in Europe (Eurostat, 2023).
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the responses of the unemployment rate.

Unemployment Rate DEU Unemployment Rate FRA Unemployment Rate ITA
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Figure 5: Impulse responses of output and prices of the energy sector to
a heat shock, with 68% and 90% confidence intervals in shades of blue.
The responses are presented for Germany (left column), France (middle
column), and Italy (right column).
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4.1.3 Precipitation and drought shocks

Figure 6 and Figure 7 present the impact and cumulative responses to precipitation

and drought shocks, respectively. The effects on energy production differ markedly across

countries. In Italy, precipitation shocks reduce energy output, while drought shocks have a

mild positive effect. In contrast, France exhibits a negative response to drought shocks, and

Germany shows no significant response to either shock. These heterogeneous patterns likely

reflect structural differences in the energy mix and sensitivity to climatic conditions. In Italy,

where hydropower represents a larger share of electricity generation, energy production is

more directly exposed to precipitation-related variability. Conversely, in France, the negative

impact of drought shocks may stem from the reliance on nuclear power, which depends on

river water for cooling. During droughts, lower water levels and thermal discharge constraints

can limit nuclear output. Germany, with a more diversified and less climate-sensitive energy

portfolio—including a reduced role for both hydropower and nuclear—exhibits greater re-

silience to such weather shocks. Consistently, when significant, energy producer prices tend

to move in the opposite direction to energy production in response to weather shocks.

Figure 6: Impact (red) and cumulative responses at 3 months (green) and
6 months (blue) to a precipitation shock, with 68% and 90% confidence
intervals shown as black and gray whiskers, respectively.

Conversely, manufacturing production in Germany appears highly sensitive to these

shocks, expanding in response to precipitation shocks and contracting following drought

shocks. Italy exhibits the opposite pattern, albeit with less pronounced effects: precipitation

shocks are associated with a decline in output, while drought shocks lead to a positive re-

sponse. In France, the manufacturing sector shows limited sensitivity to either type of shock.

These cross-country differences—where France emerges as the most resilient and Italy as the
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Figure 7: Impact (red) and cumulative responses at 3 months (green)
and 6 months (blue) to a drought shock, with 68% and 90% confidence
intervals shown as black and gray whiskers, respectively.
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Figure 8: Impulse responses of construction production to each type
of weather shock (columns), with 68% and 90% confidence intervals in
shades of blue. Responses are shown for Germany (top row), France
(middle row), and Italy (bottom row).

most affected—are consistent with the findings of Billio et al. (2020) and Olper et al. (2021).

The construction sector, despite being directly exposed to weather conditions, does not

exhibit significant responses to either shock in France or Germany. In contrast, in Italy,

precipitation shocks have a persistent negative effect, while drought shocks have a persistent

positive effect. Figure 8 provides a more detailed view of the construction sector’s response
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to each weather shock through extended impulse responses. Cold shocks consistently re-

duce construction output on impact across all countries, with the largest effect observed

in Germany, followed by France, and the smallest in Italy—reflecting differences in average

temperature levels across countries. Among the three countries, Italy stands out as the only

case where the construction sector responds significantly to all five weather shocks. Cold,

precipitation, and wind shocks are associated with negative effects, while drought and heat

shocks lead to positive responses, with impacts reaching up to 1% on impact—patterns that

align with intuitive priors. Drought and wind shocks exhibit the most persistent effects.

4.1.4 Wind shock

Impact and cumulative responses to a wind shock are depicted in Figure 9. Our findings

reveal a significant decline in construction activity in Italy, with output falling by around 2%

within six months of the shock. In contrast, Germany and France do not exhibit significant

responses. The persistence of the effect in Italy is further illustrated in the bottom-right panel

of Figure 8, which shows an initial decline in construction output growth of approximately

0.5%, followed by a gradual return to the steady state over the course of a year. This

pronounced impact can largely be attributed to the sector’s exposure to wind conditions,

which can disrupt construction activity by necessitating the suspension of crane operations

and delaying ongoing projects. Such adverse effects appear less severe in Germany and

France.

Figure 9: Impact (red) and cumulative responses at 3 months (green) and
6 months (blue) to a wind shock, with 68% and 90% confidence intervals
shown as black and gray whiskers, respectively.

A second notable finding concerns the dynamic response of the energy sector to a wind

20



shock. Energy prices in all three countries tend to decrease for both producers and consumers.

This widespread impact on energy prices can be attributable to the increase in wind energy

production.10 Despite comparable shares of renewable energy production across Germany,

France, and Italy,11 the proportion of electricity generated from wind power significantly

varies among these countries: 21.3% in Germany, 8.0% in France, and 7.2% in Italy (IEA:

International Energy Agency, figures for 2022). Consistently, we find a stronger negative

effect on energy PPI in Germany, followed by France, with a negative but statistically in-

significant effect in Italy. Germany benefits from a more diversified and technologically

advanced energy mix, contributing to lower electricity generation costs relative to Italy. In

contrast, Italy faces higher costs due to its greater reliance on natural gas and less favorable

conditions for renewable energy deployment. France, by comparison, maintains relatively

low generation costs, primarily as a result of its substantial dependence on nuclear power,

which provides a stable and cost-effective energy source. Consumer energy prices decline by

a similar magnitude across all three countries, with the effect materializing with a lag.

Finally, the manufacturing sector does not appear to be significantly impacted by wind

shocks.

4.2 Dynamic effects of weather shocks on services

We now investigate the dynamic effects of weather-specific shocks on the service sector,

with a focus on France, where detailed monthly data on services output are available. While

monthly data on services prices are available for all three countries, output data are only ac-

cessible for France.12 Impulse responses to the weather shocks are estimated by incorporating

services prices and output into the baseline specification, applying the same methodology

used for other sectors in the previous section. While service production generally responds

less strongly to weather shocks than other sectors, temperature shocks elicit significant re-

actions in several sub-sectors. The findings also highlight spillovers from complementary

sectors, such as construction, suggesting demand-driven effects. Overall, the results point

to the heterogeneous and region-specific nature of weather-related impacts on the service

10Wind power, being a renewable energy source with zero fuel costs, typically bids into electricity markets
at a very low or even negative price. This can lead to lower overall electricity prices, particularly during
periods of high wind generation, as these generators are dispatched before more expensive fossil fuel plants.
A key mechanism through which wind power influences electricity prices is marginal pricing, whereby the
price at any location and time is determined by the cost of the most expensive generator required to meet
demand. Since wind power is often among the lowest-cost sources available, its presence tends to lower the
marginal price of electricity, especially during high wind periods (see, e.g., “Regulation (EU) 2024/1747 of
the European Parliament and of the Council of 13 June 2024”, 2024).

11Germany: 20.8%, France: 20.3%, Italy: 19% (source: European Environment Agency, 2022).
12Detailed data on services sector production are available for Germany only from 2016 onwards and are

not available for Italy at the time of writing (see Eurostat).
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economy.

Figure 10 presents the impact and cumulative impulse responses of services inflation to

the different weather-specific shocks across countries. The responses display considerable

cross-country heterogeneity, with service prices generally showing mild reactions to weather

shocks. However, when statistically significant, these responses tend to align with the di-

rection of the response observed in construction output, suggesting the presence of demand

complementarities—that is, increased (or decreased) activity in construction may influence

the demand for certain service categories, thereby affecting their prices. This pattern is

evident in the case of cold shocks, which lead to a significant decline in services inflation

in Germany, and in the price response to heat shocks in France (see Figures 2 and 4 for

comparison).

Figure 10: Impact (red) and cumulative responses at 3 months (green) and
6 months (blue) of services inflation (HICP) to the five weather shocks,
with 68% and 90% confidence intervals shown as black and gray whiskers,
respectively.

Figure 11 reports the responses of production in various French service sub-sectors, rang-

ing from G (Wholesale and retail trade) to N (Administrative and support service activities),

as defined in Table 1. Compared to the production sectors analyzed previously, the response

of service sector output to weather shocks is relatively limited. Nonetheless, heat shocks gen-

erate the most pronounced reactions, with four sub-sectors showing statistically significant

responses.

These findings, together with the observed increase in construction activity following heat

shocks, suggest that construction activity may stimulate demand in complementary service

sectors such as retail and transportation. The fact that both prices and output in these

sectors move in the same direction further supports the interpretation that these effects are
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demand-driven.

Figure 11: Impact (red) and cumulative responses at 3 months (green)
and 6 months (blue) of French services production to the five weather
shocks, with 68% and 90% confidence intervals shown as black and gray
whiskers, respectively. G: Wholesale and retail trade, H: Transportation,
I: Accommodation, J: Communication, L: Real estate, N: Administrative
support.

4.3 On the use of composite weather indices: CWI shock

Throughout Section 4.1, we examined the economic effects of various individual types of

weather shocks, emphasizing their distinct transmission channels. In recent years, however,

the use of composite weather indices has gained prominence in the literature (see, e.g., Kim

et al., 2025). This raises the question of whether such indices can provide additional insights

beyond those offered by individual weather shocks.

Figure 12 presents the impulse responses of sectoral production to a composite weather

shock in each country. The index is constructed as the average of the five individual com-

ponents, following the approach of the ACI13 for North America. As expected, construc-

tion activity declines across all countries, reflecting the sector’s direct sensitivity to adverse

weather conditions. What underlies this result? A comparison with the responses in Figure

8 suggests that, for Italy, the pattern closely mirrors that of a wind shock. For France and

Germany, the interpretation is less straightforward. In France, the negative response may be

primarily driven by cold shocks—consistent with cold being the only individual shock with

a statistically significant effect—though this appears partially obscured in the composite

13American Academy of Actuaries (2016).
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response. In Germany, the outcome likely reflects a combination of cold and heat shocks,

resulting in a less clear-cut overall effect.

For the energy sector, which we found to be strongly affected by individual shocks-

particularly cold-there is limited evidence of a significant response to the composite index.

Only Italy displays a statistically significant effect, and the positive sign of this response

is not straightforward to interpret. A similar pattern is observed for manufacturing, where

Italy is again the only country exhibiting a significant response to the composite shock. In

this case, the effect is significant only on impact, and the underlying drivers remain unclear.

Manufacturing Production DEU Manufacturing Production FRA Manufacturing Production ITA

Energy Production DEU Energy Production FRA Energy Production ITA

Construction Production DEU Construction Production FRA Construction Production ITA
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Figure 12: Impulse responses of sectoral production to a CWI shock, with
68% and 90% confidence intervals in shades of blue. The horizontal axis
denotes the horizon in months. Results are shown for Germany (left
column), France (middle column), and Italy (right column).

Overall, the responses indicate that the effects of individual weather shocks tend to be

offset or obscured in the composite index. Nonetheless, while less suited to identifying

specific transmission channels, composite weather indices remain informative in certain con-
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texts. First, they provide a parsimonious summary of overall weather variability, which is

particularly useful for assessing the consistency of results across sectors and countries. Sec-

ond, in real-world decision-making—particularly in policy and business contexts—weather

conditions are often experienced as a bundle of simultaneous anomalies rather than isolated

shocks. A composite measure therefore captures the joint influence of multiple weather di-

mensions, providing a useful benchmark for assessing the aggregate sensitivity of economic

outcomes to overall weather variability. Accordingly, while composite shocks are less infor-

mative for identifying specific mechanisms, they remain valuable for assessing the robustness

and generalizability of the main findings.

4.4 Non-linearities

We now investigate the presence of non-linearities using Local Projections, as outlined

in Section 3. We first assess whether the effects of weather shocks differ by season, and then

test the hypothesis of Billio et al. (2020) that the impact varies across phases of the business

cycle. We focus on manufacturing production, which is the largest tradable sector, less

directly exposed to weather, and thus well suited to capturing indirect and cyclical effects.

This choice also facilitates comparability with Billio et al. (2020). We use the composite index

for this analysis, as it provides a parsimonious summary of overall weather variability while

allowing us to capture broader patterns of interaction with seasonal and cyclical conditions.

Figure 13 presents the non-linear responses by season, estimated using a sine function

as the transition variable. This function is constructed to take a value of 0 in January

and reach 1 in July, thereby capturing gradual seasonal variation throughout the year. The

results do not indicate significant non-linear effects associated with seasonality, as evidenced

by the similarity with the linear responses shown in the bottom row of Figure 12. This

finding supports our approach to constructing weather shocks by computing deviations from

month-specific percentiles, which effectively mitigates the influence of seasonal patterns. By

accounting for seasonality in the definition of weather shocks, this method helps ensure that

estimated effects are not confounded by recurring seasonal dynamics.

Billio et al. (2020) suggest that weather shocks exert a stronger impact on sectoral produc-

tion during recessions than in periods of expansion. To assess this hypothesis, we define two

distinct regimes of economic activity using the European Sentiment Index (ESI) as the tran-

sition variable. The ESI is a composite indicator derived from a range of surveys conducted

by the European Commission and serves as a proxy for business cycle conditions—taking low

values during downturns and higher values during periods of expansion. It is widely used in

applied research and has been shown to effectively track euro area business cycle fluctuations
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Figure 13: Non-linear responses of manufacturing production to a CWI
shock, with 68% and 90% confidence intervals, differentiated by season.
The black solid lines with blue shaded confidence bands represent re-
sponses in winter, while the orange solid lines with dashed and shaded
orange confidence bands represent responses in summer.

in real time (Bańbura & Modugno, 2014). Figure 14 presents the impulse response functions

of manufacturing production across the two economic regimes for the three countries in our

sample.
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Figure 14: Non-linear responses of manufacturing production to a CWI
shock, with 68% and 90% confidence intervals, differentiated by business
cycle regime. The black solid lines with blue shaded confidence bands
represent responses in the low-growth regime, while the orange solid lines
with dashed and shaded orange confidence bands represent responses in
the high-growth regime.

Figure 14 presents non-linear impulse responses of manufacturing production to a CWI

shock across business cycle regimes. In Germany, the response is more pronounced in the

low-growth regime, showing a significant and persistent contraction, while France exhibits a

more muted and statistically insignificant response across regimes. In contrast, Italy displays

stronger and more persistent effects in the high-growth regime, suggesting that weather

shocks interact differently with cyclical dynamics across countries. These findings provide

partial support for the hypothesis in Billio et al. (2020) that weather shocks have a greater
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impact during downturns, though Italy’s response suggests that sectoral or structural factors

may modulate this relationship. A more systematic investigation of the role of country-

specific characteristics in shaping these non-linear effects is left for future research.

4.5 Cross-country spillovers

A potential concern when estimating separate VAR models for each country is that they

do not account for cross-country spillovers, which could be relevant when the shocks are

correlated across countries. In our setting, the contemporaneous covariance between CWI

indices is relatively low: 0.09 for Germany and France, 0.04 for Germany and Italy, and 0.06

for France and Italy.

Nonetheless, to assess the relevance of such spillovers, we replicate the analysis of sectoral

production by replacing the domestic CWI shock with the residual component of the foreign

CWI shock that is orthogonal to the domestic one. Specifically, we first regress the foreign

CWI on the domestic CWI and then use the resulting residuals as the shock variable in the

SVAR model to compute the impulse responses. To ensure the absence of delayed effects,

we extend the analysis to include responses up to 12 months after the shock.

The results, shown in Figure 15, indicate that cumulative responses at the 3-, 6-, and 12-

month horizons are statistically insignificant, with the sole exception of a mildly significant

effect on German construction production following a CWI shock in Italy. Overall, these

findings suggest that cross-country spillovers are not a major concern in our empirical setting.

5 Conclusions

This paper introduced a novel measure of abnormal weather conditions, constructed

from high-frequency, grid-level data aggregated at the country level and weighted by prox-

ies of economic activity. By incorporating both the spatial distribution of weather and its

economic relevance, the indicators provide an accurate representation of country-level expo-

sure to different types of weather realizations. In a first application, we showed how these

indices—interpretable as macroeconomic shocks—could be used to analyze the dynamic ef-

fects of weather on sectoral production and prices, offering insights into the key transmission

channels through which weather influences the economy.

We examined the short- to medium-term dynamic effects of weather shocks on sectoral

production and prices in Germany, France, and Italy—the three largest European economies.

The analysis extends the existing literature by considering a wider set of sectors and weather
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Figure 15: Cumulative responses at 3 months (red), 6 months (green),
and 12 months (blue) to a shock in the residual foreign CWI on domestic
sectors, with 68% and 90% confidence intervals shown as black and gray
whiskers, respectively.
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shocks beyond the conventional focus on temperature. Our analysis highlights several key

mechanisms. The construction sector is directly affected by weather conditions; cold shocks

cause significant declines in output, while wind shocks also have a negative impact, though

less pronounced. Notably, heat shocks benefit construction in northern Europe (e.g., Ger-

many, a colder country) but not in southern Europe (e.g., Italy, a warmer country), highlight-

ing a significant latitude effect. Second, the energy sector is influenced through both demand

and supply channels. Temperature fluctuations increase the demand for heating during cold

spells, while wind affects the supply side by altering the cost of electricity production. Third,

the manufacturing sector is less directly affected by weather shocks. Instead, it experiences

indirect impacts primarily through changes in energy input costs: weather-related disrup-

tions in the energy market influence manufacturing output via fluctuations in energy prices.

Notably, we show that composite indices—such as the ACI (Kim et al., 2025)—are not well

suited to identifying these mechanisms, as they may conflate the distinct effects of individual

underlying weather shocks.

What are the policy implications of our findings? As weather shocks become more fre-

quent and intense due to climate change, policymakers must develop strategies that enhance

economic resilience and adaptation capacity. A crucial step in this direction is accurately

measuring exposure to abnormal weather conditions, which is essential for informing tar-

geted and effective policy responses. Sector-specific strategies should reflect geographic and

structural differences, particularly in highly exposed sectors such as construction and energy.

In parallel, coordinated efforts at the European level are needed to stabilize energy markets

and support the transition toward cleaner energy sources. This is especially relevant given

the indirect impact of weather shocks on manufacturing through energy price volatility.
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Bańbura, M., Giannone, D., & Reichlin, L. (2007). Bayesian vars with large panels.
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A Weather data

Weather data from ERA5 (Hersbach et al., 2020) at a regular latitude-longitude grid of

0.25 is taken from the reanalysis era5 single levels dataset. In particular, daily temperature

corresponds to the 2m temperature (daily mean) variable; daily total precipitation corre-

sponds to total precipitation; and maximum daily wind to 10m wind gust since previous post

processing. To aggregate the grid-level data to the country level we employ the Database

of Global Administrative Areas (GADM), using the first level of resolution GADM0.1 To

measure drought we instead use the SPEIbase dataset v.2.9 (Begueŕıa et al., 2023).2 Finally,

to proxy for economic activity at the grid level we use night-time light intensity3 from Li

et al. (2020). These are used to weight weather observations at the grid-cell level when

aggregating to a lower spatial resolution, as in Gortan et al. (2024).

The computation of the heat, precipitation and wind shocks is exactly as presented in

section 2.1. The computation of the cold shock is naturally adapted to account for daily

temperature observations that are below the 5th percentile instead of above the 95th. For

the drought shock, we use the Standardized Precipitation-Evapotranspiration Index with a

3-month accumulation window, denoted as SPEI3j,k. Since the SPEI is already provided at

the grid-cell level and comes pre-standardized and thresholded, we only apply our aggregation

and country-level standardization procedure. Specifically, for each month j, we compute the

mean µSPEI3j and standard deviation σSPEI3j of the aggregated national SPEI3 series. The

final drought shock index is then obtained by standardizing the SPEI3 for each month j and

year k using these month-specific parameters:

SPEI3stdj,k = −
SPEI3j,k − µSPEI3j

σSPEI3j

In the canonical interpretation of the SPEI, positive values indicate above-average precipi-

tation, while negative values reflect below-average precipitation. To ensure consistency with

the other weather components-where higher values denote more severe weather shocks-we

take the negative of the standardized SPEI3j, k. This transformation ensures that large

positive values of SPEI3stdj, k correspond to months characterised by drought conditions.

Figures A16 to A18 display the five weather components for each country. By construc-

tion, the indices are defined such that a positive value indicates the presence of a weather

shock, while a value of zero indicates its absence. As a result, negatively correlated compo-

nents—such as heat and cold, or drought and precipitation—do not offset one another when

1https://gadm.org/.
2http://hdl.handle.net/10261/332007.
3Measured in 2015.
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aggregated into the CWI. This design ensures that the distinct contribution of each shock

type is preserved in the composite measure.

Figure A16: The five weather components for Germany.

B Comparison to existing weather indices

While our weather indices build on previous contributions, they also incorporate impor-

tant methodological innovations. This Appendix outlines the main similarities and differ-

ences compared to the most closely related studies.

Several studies rely on deviations of weather variables from historical averages. For

example, Ciccarelli et al. (2023) examine changes in mean temperature and its variability

relative to long-term means, while Parnaudeau and Bertrand (2018) use monthly deviations

from 30-year historical averages for temperature, precipitation, humidity, and wind speed.

However, only a few contributions explicitly account for deviations from seasonal norms, as

in our approach. Starr (2000) employ Heating and Cooling Degree Days (HDD and CDD),

constructed relative to seasonal averages, and Bloesch and Gourio (2015) use anomalies
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Figure A17: The five weather components for France.

based on calendar-month averages for temperature and snowfall. Adjusting for seasonal

norms is essential to identifying genuinely abnormal weather events. This approach also

provides seasonal adjustment by construction, facilitating a more accurate estimation of the

economic effects of unusual weather, distinct from regular seasonal fluctuations.

Several studies reduce noise in weather measures by focusing on extreme deviations or

applying threshold-based approaches. This methodology rests on the assumption that large

shocks are less likely to be anticipated and thus are less likely to be incorporated into

forward-looking behavior. For instance, Wilson (2019) count the number of days exceeding

a fixed threshold to capture the persistence of extreme conditions, while Kotz et al. (2022)

construct annual rainfall indices based on the number of wet days above a percentile threshold

and the corresponding total precipitation. In both cases, thresholds are applied relative to

unconditional distributions, rather than accounting for seasonal variation. In contrast, we

adopt month-specific thresholds to better account for the pronounced seasonality in weather

patterns, while also avoiding the volatility inherent in day-specific measures.

Most of the literature relies on aggregated weather data at the national or regional level
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Figure A18: The five weather components for Italy.

(e.g., Billio et al., 2020; Ciccarelli et al., 2023; Giugliano et al., 2023), with relatively few

papers using high-resolution spatial data. Bloesch and Gourio (2015) compute station-level

anomalies and aggregate them by simple averaging at the state level. Kotz et al. (2022) use

grid-level time series and aggregate to regions using area or population weights. Roth Tran

(2020) emphasizes that the relevant economic impact depends on the abnormality of weather

relative to both location and time of year, underscoring the need for spatially and temporally

specific measures. Failing to account for such heterogeneity may lead to aggregation bias

and attenuation of the estimated effects.

Finally, to facilitate interpretation and comparability, many studies standardize weather

indices using either season-specific (Bloesch & Gourio, 2015) or month-specific (Kotz et al.,

2022) means and standard deviations. We adopt the latter standardization.

We contribute to the literature by constructing measures of exposure to abnormal weather

realizations across five distinct dimensions-heat, cold, drought, precipitation, and wind-

defined as anomalous deviations from calendar-month-specific historical averages at the grid-

cell level. These deviations are then aggregated to the country level using weights based on
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proxies for economic activity. To enhance interpretability and cross-country comparability,

the resulting indices are standardized using month-specific means and standard deviations.

This methodology provides a harmonized and granular framework, well-suited for evaluat-

ing the macroeconomic effects of abnormal weather conditions across different sectors and

countries.

C Bayesian estimation

We adopt priors from the Normal-Inverse-Wishart family, specified as follows:

β|Σ ∼ N(b,Σ⊗ Ω),

Σ ∼ IW(Ψ,d),

where b, Ω, Ψ, and d are functions of a lower-dimensional vector of hyperparameters γ, and β

denotes the vectorised coefficients of the autoregressive matrices Aj. This prior specification

offers two key advantages. First, it encompasses the priors most commonly employed in the

Bayesian VAR literature. Second, due to the conjugacy of the priors with the likelihood

function, the marginal likelihood is available in closed form, facilitating model comparison

and inference. We set the degrees of freedom for the inverse-Wishart distribution to d = n+2,

where n denotes the number of endogenous variables in the model. This choice represents

the minimum value ensuring the existence of the mean of the inverse-Wishart distribution

for Σ, given by Φ
d−n−1

. The matrix Φ is diagonal, with the vector ϕ on the main diagonal.

Giannone et al. (2015) propose to use three priors pertaining to the normal-inverse-

Wishart family. The Minnesota (Doan et al., 1984), formalizes the idea that, ex ante, all the

individual variables are expected to follow random walk processes. We specify it as follows.

The conditional mean of the prior distribution is given by:

E[(As)ij|Σ] =

1 if i = j and s = 1

0 otherwise
,

so that an impact on a given variable only affects that variable at the next period in time,

without affecting any variable at different lags. The conditional covariance of the prior

distribution is given by:

cov[(As)ij, (Ar)kl|Σ] =

λ2 1
sα

Σik

ψj/(d−n−1)
if l = j and r = s

0 otherwise
,

6



where λ is the main hyperparameter and it controls the relative importance of prior and

data (that is, the variance associated to the prior, in other words, the degree of confidence

attributed to the prior). When λ → 0, no weight is given to the data and vice versa for

λ → ∞. α is an hyperparameter that controls how fast this covariance should decrease

with the number of lags and ψj is the j
th entry of ψ, which controls the variance associated

to each variable. Some refinements of the Minnesota prior have been proposed in order to

favour unit roots and cointegration, grounded on the common practices of many applied

works. These take the form of additional priors that try to reduce the importance of the

deterministic component of the VAR model.

The sum-of-coefficients prior is based on the idea that a “no-change” forecast is a good

forecast at the beginning of the period. It is implemented by adding at the beginning of the

sample artificial data constructed in the following way:

y+
n×n

= diag

(
ȳ0
µ

)
=


ȳ1
µ

0 · · · 0

0 ȳ2
µ

· · · 0
...

...
. . . 0

0 0 0 ȳn
µ


x+

n×(1+np)
=

[
0

n×1
, y+, · · · , y+

]
,

where ȳj denotes the average of the first p observations for each variable j = 1, · · · , n. This
prior implies that the sum of the coefficients of each variable on its lags is 1 and that the

sum of the coefficients of each variable on the other variables’ lags is 0. It also introduces

correlation among the coefficients of the same variable in that variable’s equation. The

hyperparameter µ controls the variance of these prior beliefs: as µ→ ∞, the prior becomes

uninformative, while µ → 0 implies the presence of a unit root in each equation and rules

out cointegration.

Since in the limit this prior does not allow for cointegration, the single-unit-root (also

called dummy initial observation) prior can be implemented to push the variables towards the

presence of cointegration. This is designed to remove the bias of the sum-of-coefficients prior

against cointegration, while still addressing the overfitting of the deterministic component

issue. It is implemented by adding one artificial data point at the beginning of the sample:

y++

1×n
=

( ȳ0
δ

)′
=

[
ȳ1
δ
, · · · , ȳn

δ

]
x++

1×(1+np)
=

[
1
δ
, y++, · · · , y++

]
,
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The hyperparameter δ controls the tightness of the prior implied by this artificial observation.

As δ → ∞, the prior becomes uninformative. As δ → 0, the model tends to a form in which

either all variables are stationary with means equal to the sample averages of the initial

conditions, or there are unit root components without drift terms.

The three priors illustrated depend on the hyperparameters λ (the tightness of the Min-

nesota prior), µ (the tightness of the sum-of-coefficients prior), δ (the tightness of the single-

unit root prior) ψ (which specifies the prior variance associated with each variable) and α

(which relates to the decay of the covariance of coefficients relative to more lagged variables).

We use the following parametrization: λ ∼ Γ with mode equal to 0.2 and standard deviation

equal to 0.4; , µ ∼ Γ with mode equal to 1 and standard deviation equal to 1; δ ∼ Γ with

mode equal to 1 and standard deviation equal to 1; α ∼ Γ with mode equal to 2 and stadard

deviation equal to 0.25. The hyperprior for the elements in ψ is set to an inverse-Gamma

with scale and shape equal to 0.0004. Note that these are not flat hyperpriors. This guar-

antees the tractability of the posterior and it helps to stabilize inference when the marginal

likelihood happens to show little curvature with respect to some hyperparameters. Please

refer to the original paper by Giannone et al. (2015) for additional technical details.

D Sensitivity analysis

In this Appendix, we conduct a series of robustness checks and explore alternative con-

structions of the weather shocks. To effectively summarize the findings, we focus on the

impulse responses of sectoral production to a composite weather shock as the primary ob-

ject of replication.

We begin by presenting a falsification test in which the weather indices are randomly

reassigned across months, after which the full estimation procedure is repeated. The re-

sulting impulse response functions are statistically insignificant, suggesting that our baseline

estimates are not driven by spurious correlations and reinforcing the credibility of our iden-

tification strategy. Second, we consider an alternative construction of the weather indices

based on the number of days in each month exceeding the defined threshold,thereby explicitly

capturing accumulation effects. Next, we reverse the sequence of aggregation and thresh-

olding by first computing monthly weather values at the country level, and then applying

the thresholding and standardization procedures. This top-down approach yields attenuated

and less precise responses, underscoring the advantages of our preferred granular methodol-

ogy. In addition, while the baseline computation defines abnormal weather events using the

95th percentile of the calendar-month-specific distribution, we show that the main results

remain robust when applying more extreme thresholds, such as the 99th percentile. Finally,
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we demonstrate that excluding months in which natural disasters have been recorded—by

setting the corresponding weather shocks to zero—has virtually no impact on the estimated

responses, indicating that the macroeconomic effects we identify are not driven by extreme

events of this nature.

D.1 A falsification test: randomizing the dates of the shocks

Manufacturing Production DEU Manufacturing Production FRA Manufacturing Production ITA

Energy Production DEU Energy Production FRA Energy Production ITA

Construction Production DEU Construction Production FRA Construction Production ITA

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
−1.0

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

Months

Figure D19: Impulse responses of sectoral production to a CWI shock,
with 68% and 90% confidence intervals. Randomised instrument: black
solid line with blue shaded confidence bands; baseline instrument: red
solid line with dotted bands The horizontal axis denotes the horizon in
months. Results are shown for Germany (left column), France (middle
column), and Italy (right column).

As an initial robustness check, we conduct a falsification test in which the weather indices

are randomly shuffled across months, thereby breaking any systematic temporal relationship
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between weather conditions and economic outcomes. The subsequent analysis follows the

standard estimation procedure applied in the baseline specification. Figure D19 presents

the results of this exercise. The impulse response functions are statistically insignificant,

indicating that the estimated effects are not driven by spurious correlations and lending

further credibility to our identification strategy.

D.2 Accumulation effects

As an alternative to defining weather shocks based on values exceeding the month-specific

95th percentile, we consider a measure constructed as the number of days in each month

that surpass this threshold: ˜WM c,m,y =
∑Dm

d=1 1{Wc,d ≥ Wc,t̃}. This formulation captures

Figure D20: The five weather components for Germany: comparison be-
tween the baseline computation (red) and an alternative measure based
on the number of threshold-exceeding days.

accumulation effects, which are particularly relevant in contexts where adverse weather leads

to delays in economic activity (Natoli, 2022). Given the standardization applied and the

similarity in daily exceedance patterns, the resulting weather shocks are highly comparable to
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those obtained using the baseline method. For instance, Figure D20 illustrates the alternative

construction for Germany, which yields results closely aligned with those from the original

specification. Accordingly, this alternative approach produces impulse responses that are

nearly indistinguishable from those of the baseline, reinforcing the robustness of our findings.

D.3 Computing the shocks at the country level

Figure D21 presents results based on an alternative construction of weather shocks, in

which weather observations are first aggregated at the country level before computing ex-

ceedance values and applying standardization. This approach results in attenuated responses

for some variables, most notably for energy production in Italy.
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Figure D21: Impulse responses of output and prices of the energy sector
to a cold shock, with 68% and 90% confidence intervals in shades of blue.
Results are shown for Germany (left column), France (middle column),
and Italy (right column).
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D.4 Using different percentiles

Figure D22 shows that the CWI remains robust when computed using alternative thresh-

olds, such as the 99th percentile, instead of the 95th used in the baseline analysis.
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Figure D22: Impulse responses of output and prices of the energy sector to
a cold shock, with 68% and 90% confidence intervals. Shock constructed
by first aggregating at the country level: black solid line with blue shaded
confidence bands; baseline shock: red solid line with dotted bands. The
horizontal axis denotes the horizon in months.

D.5 Excluding natural disasters

As discussed, the weather shocks we construct capture large deviations from historical,

calendar-specific averages. These shocks reflect abnormal weather conditions that disrupt the

typical timing of economic activity, potentially influencing output through shifts in sectoral

demand and supply. This contrasts with the weather-related events typically examined in the
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natural disaster literature, which emphasize the destruction of physical and human capital

(see, e.g., Kruttli et al., 2023; Ferriani et al., 2024). In the European countries analyzed,

such extreme events are relatively rare compared to regions like the United States, where

natural disasters are larger and more frequent. To support this interpretation, we conduct
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Figure D23: Impulse responses of sectoral production to a CWI shock,
with 68% and 90% confidence intervals. Shock excluding disaster months:
black solid line with blue shaded confidence bands; baseline shock: red solid
line with dotted bands The horizontal axis denotes the horizon in months.

a robustness check using the EM-DAT International Disaster Database (Guha-Sapir et al.,

2016). Specifically, we identify the months in which documented natural disasters occurred

in Germany, France, and Italy, and set the corresponding weather shock values to zero for

those months.4 As shown in Figure D23, this adjustment has virtually no effect on our

4We classify a weather-related event as a natural disaster if it caused at least 100 deaths, affected 1,000
or more individuals, or resulted in estimated damages exceeding 1 million USD. Between 1990 and 2019,
such events occurred in 22 months in Germany, 42 in France, and 22 in Italy.
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results, indicating that the estimated impacts are not driven by natural disasters.

Date Disaster Type Total Deaths Total Affected Total Damage, Adjusted (’000 US$) Country

1990-01-25 Storm (General) 8 2687818 Germany
1990-02-03 Storm (General) 7 1343909 Germany
1990-02-03 Storm (General) 23 2015864 France
1990-02-25 Storm (General) 15 2687818 Germany
1990-02-28 Storm (General) 24 2687818 Germany
1991-04-20 Cold wave 1658909 France
1992-09-22 Severe weather 47 2000 834270 France
1992-10-31 Riverine flood 1000 1433484 Italy
1993-07-05 Hail 2 1518 101294 France
1993-09-22 Storm (General) 10 202 1012939 France
1993-09-22 Storm (General) 8 1000 1266173 Italy
1993-12-20 Riverine flood 4 1215526 France
1993-12-21 Riverine flood 5 100000 1215526 Germany
1994-07-03 Lightning/Thunderstorms 5 1273880 Germany
1994-11-01 Riverine flood 68 17300 18361882 Italy
1995-01-21 Storm (General) 5 30000 614566 Germany
1995-01-21 Storm (General) 16 5000 1344362 France
1997-01-04 Cold wave 23 10000 France
1997-07-04 Riverine flood 5200 656354 Germany
1997-07-26 Forest fire 1259 France
1998-05-01 Landslide (wet) 3682 51526 Italy
1999-01-18 Flood (General) 1100 France
1999-05-11 Riverine flood 7 100000 755465 Germany
1999-05-30 Storm (General) 3 100020 France
1999-11-12 Flash flood 36 3005 878448 France
1999-12-24 Extra-tropical storm 15 2811033 Germany
1999-12-26 Extra-tropical storm 88 3400011 14055163 France
1999-12-27 Extra-tropical storm 8 7027581 France
2000-10-14 Flash flood 25 43000 13596043 Italy
2000-11-20 Flood (General) 5 2000 84975 Italy
2001-03-21 Riverine flood 3 8100 218747 France
2001-04-07 Riverine flood 7371 France
2002-08-11 Flood (General) 27 330108 18873085 Germany
2002-09-08 Riverine flood 23 2500 1936118 France
2002-10-26 Extra-tropical storm 11 2928582 Germany
2002-11-22 Riverine flood 2 10000 569447 Italy
2003-07-16 Heat wave 20089 6999853 Italy
2003-07-28 Forest fire 5 3004 France
2003-08-01 Heat wave 19490 6999853 France
2003-08-29 Riverine flood 2 350 1042024 Italy
2003-12-02 Flash flood 9 27000 2386314 France
2005-09-07 Flash flood 1 3000 France
2006-07-15 Heat wave 1388 France
2007-01-18 Extra-tropical storm 11 130 7763012 Germany
2008-02-29 Extra-tropical storm 5 1631127 Germany
2008-05-29 Severe weather 3 2038909 Germany
2008-08-03 Tornado 3 2100 108742 France
2009-01-23 Extra-tropical storm 11 4365193 France
2009-10-01 Riverine flood 35 5140 27282 Italy
2010-02-28 Extra-tropical storm 4 1342112 Germany
2010-02-28 Extra-tropical storm 53 500079 5677133 France
2010-06-15 Flash flood 25 2013168 France
2010-10-31 Storm (General) 3 5 1170321 Italy
2011-11-06 Riverine flood 6 2300 France
2012-06-01 Drought 1516849 Italy
2012-11-11 Riverine flood 4 1200 19120 Italy
2013-05-28 Riverine flood 4 6350 16205764 Germany
2013-06-18 Flash flood 2 2000 822851 France
2013-07-27 Hail 6030052 Germany
2013-11-18 Riverine flood 18 2700 979883 Italy
2014-01-18 Flash flood 2 1601 148345 Italy
2014-05-02 Flash flood 3 8010 148345 Italy
2014-11-29 Flash flood 5 3000 374571 France
2015-03-02 Severe weather 3 1072991 Italy
2015-06-29 Heat wave 3275 France
2015-10-03 Flash flood 20 1140902 France
2016-05-31 Flood (General) 7 2438717 Germany
2016-05-31 Flood (General) 5 24 2926461 France
2017-07-24 Wildfire (General) 12012 France
2018-01-24 Flood (General) 2750 433551 France
2018-10-14 Flood (General) 14 1476 396256 France
2018-10-29 Extra-tropical storm 12 2200 1282006 Italy
2019-05-15 Flood (General) 1200 Italy
2019-06-24 Heat wave 567 France
2019-07-21 Heat wave 868 France
2020-07-30 Heat wave 1924 France
2020-10-02 Storm (General) 18 12980 1093451 France
2021-04-05 Cold wave 6048157 France
2021-07-12 Flood (General) 197 1000 43201120 Germany
2021-07-23 Wildfire (General) 11600 63722 Italy
2022-02-18 Extra-tropical storm 3 1023156 Germany
2022-05-30 Heat wave 8173 Germany
2022-05-30 Heat wave 4807 France
2022-05-30 Heat wave 18010 Italy
2022-06-04 Severe weather 1 60015 France
2023-05-16 Flood (General) 15 46000 Italy

Table D2: Natural disasters as classified in the EM-DAT dataset.
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