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Abstract

Recent developments in the VAR literature have demonstrated that it is possible to
identify structural shocks by using only the distribution of reduced-form shocks and
taking advantage of the information provided by its higher-order moments, making
shock identification possible by relying solely on the assumptions of independence
and non-Gaussianity of the structural shocks. However, the identification schemes
proposed so far, which are rooted in independent component analysis, rely on addi-
tional assumptions to solve the indeterminacy of the permutation and scaling of the
causal relations that this computational technique entails. After an overview of some
popular identification strategies, this work introduces NGSI, a data-driven algorithm
capable of performing shock identification without relying on such auxiliary assump-
tions. The key idea on which it is based is that it can be inferred from the data which
assumptions are likely to hold and the most appropriate (and precise) identification
scheme can be implemented accordingly. The performance of the algorithm is then
assessed in a wide variety of settings via an extensive simulation study. Further-
more, this work proposes a new method to empirically validate simulation models
that generate artificial time series data comparable with real-world data. The ap-
proach, which is based on the comparison of the causal structures estimated from the
artificial and the real-world data, extends previous research by exploiting structural
factor models, which, compared to standard SVARs, allow to consider a larger in-
formative set, thereby leading to a more comprehensive validation assessment. This
methodology is able to address both the problem of evaluating theoretical simulation
models against the data and the problem of comparing different models in terms of
their empirical reliability. Finally, an application of the validation procedure to the
agent-based macroeconomic model proposed by Dosi et al. (2015) is provided.

Keywords: Data-driven shock identification, dynamic factor models, model

validation, agent-based models, time-series analysis.

JEL Codes: C32, C38, C52.
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1 Introduction

The ambition of this work is twofold. On the one hand, it contributes to the VAR

literature by investigating the ways in which shock identification can be performed in

a fully data-driven fashion, relying on a minimal set of assumptions, and by proposing

a novel identification framework. On the other hand, it contributes to the literature

on the validation of macroeconomic models by developing a validation procedure

based on structural factor models, which can be identified by means of our proposed

identification algorithm.

Ever since the Vector Autoregressive model has been introduced in the macroe-

conomic literature (Sims 1980), each and every implementation of this econometric

technique has been met with the problematic nature of shock identification. Indeed,

to obtain a structural representation of the economic mechanisms that they try to

capture with structural VARs, researchers have frequently found themselves in a po-

sition in which they have to rely on a number of assumptions, mostly derived from

economic theory or based on a description of the economic system which is often

overly simplified. Moreover, most of these assumptions cannot be tested, leaving

broad discretion in the choice of the shock identificatin strategy.

Nonetheless, recent developments in the VAR literature have demonstrated that

it is possible to identify structural shocks by using only the distribution of reduced-

form shocks and taking advantage of the information provided by its higher-order

moments, making shock identification possible without the kinds of assumptions

traditionally used in the literature (see e.g. Hyvärinen et al. 2010, Moneta et al.

2013 and Lanne et al. 2017). Yet, these approaches, which have placed emphasis on

data-driven algorithms rooted in independent component analysis, do rely on a set

of less theory-driven but nonetheless heavy assumptions, such as independence and

non-Gaussianity of the structural shocks. Furthermore, a crucial issue when recurring
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to independent component analysis is given by the indeterminacy of the permutation

and scaling of the causal relations, which is typically solved by introducing additional

assumptions. Building on these contributions, in the present work we investigate the

ways in which shock identification can be performed in a fully data-driven fashion,

without relying on such auxiliary assumptions. Moreover, we inquire whether the

non-Gaussianity assumption (conveniently being testable) is likely to hold in real-

world applications.

Once the identification task can be performed in a credible manner, structural

VARs become versatile tools that can be employed in a wide variety of settings,

which is the reason why they have become one of the most popular econometric

analysis instruments when it comes to dealing with time series data (Kilian and

Lütkepohl 2017), and recent contributions have also seen them being employed for

the validation of macroeconomic models. Indeed, Guerini and Moneta (2017) have

proposed a validation procedure which focuses on the estimation and comparison of

the causal structures underlying the real-world time series and the causal structures

embedded in the model under validation. Compared to the mere ex-post ability

to reproduce a number of stylized facts, often used as main validation routine (see

e.g Fernández-Villaverde et al. 2016 and Lamperti et al. 2018), this constitutes a

significant improvement in the validation procedure, since a good matching between

the causal structures incorporated in the model and the causal structures underlying

the real-world data can provide a better support to the policy statements drawn

from the model. Furthermore, this procedure offers a solution to both the issues of

comparing different models and of validating a given model against the empirical

data.

However, a critical aspect of this methodology regards the choice of the variables

to include in the VAR and whether these can be considered a sufficient information
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set to recover the relevant causal structures. Indeed, a well-known problem in the

traditional specification of VAR models is that only a small amount of variables

can be directly included in the model, as the number of parameters that need to

be estimated rapidly increases with the number of variables. As a consequence,

the choice of what variables to consider is somewhat subjective and it constraints

the researcher to exploits a thinner informative set than that of Central Banks and

policy-makers.

In their seminal work, Bernanke et al. (2005) proposed a Factor-Augmented Vec-

tor Autoregression (FAVAR) approach to overcome the problem of including a large

amount of information in a VAR model. This method allows to account for a large

part of the information contained in the data in a parsimonious way and it facili-

tates the task of choosing which variables to include in the model, since a big part

of the information is summarized by the factors. In addition, the factor approach

sometimes allows to get a more precise measure of given quantities which have a

clear theoretical definition but cannot be distinctly observed in reality. For instance,

Boivin and Giannoni (2006) employ factor models to directly deal with measurement

errors while estimating DSGE models for which a one-to-one correspondence between

the theoretical concepts and the actual observed variables does not exist. For these

reasons, Giannone et al. (2006) and Lippi (2019) put forward that a structural factor

model should be the natural approach to use for the validation of macroeconomic

models. Since the common components can be interpreted as a cleaner version of

the variables that should be considered for structural analysis, hence free of mea-

surement error, the factor approach allows for the recovery of structural shocks that

are not contaminated by non-corresponding shocks (contamination which is instead

possible in the case of simple VARs).

This work addresses this problem by building on the contribution of Guerini and
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Moneta (2017) and expanding their validation procedure to a factor-based approach.

We here focus on the validation of agent-based models, for which an application is

also presented. Nevertheless, our methodology can be easily generalized to any

simulation model able to generate enough time series to justify the use of a factor

approach.

Over the last decade, Agent-Based Models (ABMs) have emerged as a possible

alternative to the RBC/DSGE paradigm in macroeconomics, as an attempt to over-

come some of the seemingly unrealistic assumptions that characterize the agents’

behavior in this class of models. The ABM approach, which has rapidly gained

attention in recent years, proposes to model the macroeconomic structure as an

emergent property arising from the interaction of heterogeneous and bounded ratio-

nal economic agents. However, a serious methodological issue that ABMs experience

today is their ambiguous relationship with the empirical evidence. As a matter of

fact, any macroeconomic model that attempts to represent real-world phenomena

must be empirically reliable and this is particularly important if its aim is that of

informing decision makers. Indeed, Agent-Based Models can be thought of as ar-

tificial economies that can be used as laboratories to conduct policy experiments.

It is therefore a very relevant task to assess the degree to which they are able to

represent real-world mechanisms that give rise to observable phenomena. A com-

mon approach to validate ABMs is that of evaluating a model’s ex-post ability to

reproduce a set of stylized facts, that is, a set of robust statistical properties of the

real-world data (Fagiolo and Roventini 2008). Indeed, calibration and replication of

statistical properties have been the most common methods employed by the ABM

community in order to link the model to the data (Windrum et al. 2007), and they

are also resorted to for other macroeconomic models, such as DSGEs. However, as

pointed out by Brock (1999), this is not a sufficiently severe test since stylized facts
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are “unconditional objects”, or statistical properties of a stationary process, which

do not convey information on the underlying data generating mechanism. To put it

in simpler terms, given an outcome of the model, there might be more than one un-

derlying data generating process able to replicate it and compatible with the data.

That is, replication does not necessarily imply explanation, and in this context a

more robust validation procedure is required.

The first part of the work will outline our proposed validation procedure, based

on the comparison of the causal structures embedded in the model under validation

with the ones found in the real-world data. This is done on three different levels,

corresponding to three different structural models, which we introduce: the Vector

Autoregressive model, the Factor Augmented Vector Autoregressive model and the

Dynamic Factor model.

The second part will be entirely dedicated to the problem of shock identification.

After an overview of some popular identification strategies, we will test the perfor-

mance of each of these when different assumptions on the structure of the matrix

of contemporaneous relations hold. The results of this extensive simulation study

will serve as a basis for the implementation of NGSI, a data-driven algorithm that

performs shock identification by inferring from the data which assumptions are likely

to hold and accordingly applying the most appropriate identification scheme. Then,

after having defined some appropriate metrics, we will test the performance of the

algorithm in a wide variety of settings.

The third part will provide an application of the proposed validation procedure to

the “K+S” agent-based model by Dosi et al. (2015). Prior to the validation step, we

will present the model and study the properties of the agent-based and the real-world

datasets by examining the factors that can be extracted from each.

Finally, the last section will be dedicated to the conclusions that can be drawn
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about the validation of the model and the potential of our identification approach, as

well as the further development our investigation points to. Seven appendices follow

with additional figures, tables and technical details.
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2 Validation method

In this section, we describe our proposed validation procedure, which compares the

causal structures embedded in the agent-based model with the ones found in the real-

world data. It is here presented for agent-based models but it is easily generalizable

to any macroeconomic model able to generate a large amount of time series.

The procedure is composed of several steps. We begin by applying some suitable

transformations to the agent-based data (denoted VAB) in order to make it directly

comparable to the real-world data (denoted VRW ). We then analyze the emergent

properties of the series produced by the simulated model, notably equilibrium and

ergodicity. Then, we proceed to the core of the validation procedure, consisting of

the estimation of a reduced-form model and the identification of its structural form

by means of NGSI, a data-driven algorithm which will be introduced in section 3.

Finally, we compare the estimated causal structures found in the agent-based and in

the real-world data by means of suitable distance measures.

We repeat the exercise three times, implementing three different models. We first

perform a benchmark validation by means of a standard VAR model, replicating the

exercise carried out by Guerini and Moneta (2017), with minor differences. We then

extend the framework to factor models by first implementing a Factor Augmented

VAR and then a Dynamic Factor Model, which constitute “more severe” validation

procedures. We also study the properties of the agent-based and the real-world

datasets by performing an in-depth analysis of the factors that can be extracted

from these datasets.

2.1 Dataset uniformity and analysis of ABM properties

The first step of our proposed validation method consists of rendering the agent-

based and the real-world datasets comparable. In general, the number of time series
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in each of the two datasets (respectively denoted KRW and KAB) and their length,

that is, the number of observations in the series (respectively denoted TRW and TAB),

might differ. Furthermore, for the agent-based data, we dispose of M Monte Carlo

simulations while for the real-world dataset we dispose of a single realization of the

data generating process. We therefore have that the dimensions of the two datasets

are: 
dim(VRW ) = 1×KRW × TRW

dim(VAB) = M ×KAB × TAB

This means that in practice, for the real world we observe only one realization of

the variables of interest for a period of length TRW while for the simulated data we

have M Monte Carlo realizations of the variables, for a period of length TRW .

It often holds true that TAB > TRW , as for agent-based models we can possibly

generate an infinity of observations. As it is customary in the agent-based literature

(see e.g. Caiani et al. 2016, Dosi et al. 2019 and Fagiolo et al. 2020), we discard

the initial TAB −TRW observations of the simulated data. In addition to making the

datasets uniform, this practice has the advantage of avoiding the risk of capturing the

effects present in the transient period, during which the model might not yet display

its true dynamic but still be dependant on the choice of the initial conditions. This

is beneficial in particular if the process is ergodic, which heuristically means that

it is asymptotically independent. That is, that two distant observations are almost

independently distributed. In other words, ergodic processes with different initial

conditions, which in agent-based models corresponds to different random seeds, have

asymptotically convergent properties, since the process will eventually “forget” the

past (Grazzini 2012; Windrum et al. 2007).

Conversely, the availability of many Monte Carlo realizations is not an issue but

an advantage, since it allows the pairwise comparison of each run with the unique
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empirical realization. The results of these comparisons can then be averaged over all

the Monte Carlo realizations to obtain a validation outcome robust to the variability

of the data generating process entailed in the model. Finally, the magnitude of the

time series is harmonized by applying suitable transformations to the variables. Since

the concern of most ABMs is the replication of stylized facts, such as distributions

and variations but not levels, the scale of the time series is not perceived as an issue

in general by the ABM community. However, in our application, this may cause

comparability issues with respect to the real-world counterpart and it is therefore

necessary to rescale most variables by applying appropriate transformations.

After the transient period has been discarded, as pointed out in Grazzini (2012),

in order to be a good proxy of the data, the model must be in a statistical equilibrium

state in which the properties of the analyzed series are constant. In particular, the

series (or a transformation of them) must have distributional properties that are

time-independent. We further require that the model series are ergodic, that is that

the simulated observations are random draws from a multivariate stochastic process.

Since we dispose of M Monte Carlo realizations, these assumptions can be tested

directly. This is done by collecting in an M × T matrix all the observations of a

given variable. The 1 × T rows are called samples and the M × 1 columns are

called ensembles. Ft(Yk) denotes the empirical cumulative distribution function of

an ensemble while Fm(Yk) indicates the empirical cumulative distribution function

of a sample.

As illustrated in Fig.1, ergodicity and statistical equilibrium are tested by per-

forming a series of Kolmogorov-Smirnov iterative tests on the following hypotheses:

Fi(Yk) = Fj(Yk), for i, j = 1, · · · , T i 6= j (2.1.1)
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y1,11 y1,21 · · · y1,T

y2,1 y2,2 · · · y2,T

...
...

. . .
...

yM,1 yM,2 · · · yM,T



Y k =

y1,11 y1,2 · · · y1,T

y2,1 y2,2 · · · y2,T

...
...

. . .
...

yM,1 yM,2 · · · yM,T



Y k =

Figure 1: The elements of comparison when testing for statistical equilib-
rium (above) and ergodicity (below).

Fi(Yk) = Fj(Yk), for i = 1, · · · , T j = 1, · · · ,M (2.1.2)

Prior to performing the ergodicity and equilibrium tests we stationarize the vari-

ables via appropriate transformations. These can be chosen following the procedure

proposed by M. McCracken and Ng (2020). This proceeds by first deciding which

variables to treat in levels and which variables to treat in log-levels and transforming

them accordingly. Then, stationarity is iteratively tested by means of Augmented

Dicky-Fuller tests for unit roots and each series is differentiated as long as the test

rejects the null hypothesis of stationarity. The number of differentiations necessary

to reach stationarity is taken as the estimate of the order of integration of each series.

We consider a 95% confidence level.

2.2 The Vector Autoregression Model

After having rendered the agent-based and the real-world data uniform and having

analyzed the emergent properties of the agent-based series, we can proceed to the

estimation of the first model we consider: the VAR. We first estimate the reduced-
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form model and then, after the identification step, the structural model, obtaining

the structural coefficients and the impulse response functions. In section 2.5 we will

then illustrate how these can be used to validate the agent-based model.

A Vector Auto Regression model is a model where each variable is allowed to be

influenced by its lagged values, along with the lagged values of all other variables

(up to lag p), and an error term. This can be expressed by the following system of

equations:

y1,t = φ11,1y1,t−1 + φ12,1y2,t−1 + · · ·+ φ1k,1yk,t−1 + · · ·+ φ1k,pyk,t−p + u1,t

y2,t = φ21,1y1,t−1 + φ22,1y2,t−1 + · · ·+ φ2k,1yk,t−1 + · · ·+ φ2k,pyk,t−p + u2,t

· · ·

yk,t = φk1,1y1,t−1 + φk2,1y2,t−1 + · · ·+ φkk,1yk,t−1 + · · ·+ φkk,pyk,t−p + u2,t

(2.2.1)

which can be conveniently summarized by the expression

yt = Φ1yt−1 + Φ2yt−2 + · · ·+ Φpyt−p + ut for t = 1, · · · , T, (2.2.2)

where k is the number of variables, yt is a (k×1) vector of variables, p is the number

of lags ut is a (k× 1) vector of reduced-form residuals (or shocks) and Φ1, . . . ,Φp are

(k × k) matrices of reduced-form coefficients. This can be equivalently rewritten in

matrix form as

Y = L(Y )Φ′1 + L2(Y )Φ′2 + · · ·+ Lp(Y )Φ′p + U, (2.2.3)

where L is the lag operator and the Y and U matrices are obtained by stacking the

yt and ut vectors in the following way:
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Y :=



y′1

y′2
...

y′T


, U :=



u′1

u′2
...

u′T


.

This is called reduced-form VAR(p) model and there are several criteria to esti-

mate the optimal number of lags, such as the Aikaike Information criterion (AIC),

the Bayesian information criterion (BIC) and the Hannan Quinn criterion (HQ). Es-

timates of the Φ and U matrices can be easily obtained via ordinary least squares.

When performing structural analysis, we are interested in answering questions of

the kind “how are the other variables affected by a shock in a given variable, all

else constant?”. However, answering these types of questions is not possible simply

with the reduced form coefficients and shocks since we have that the latter are not

orthogonal, that is, we have E[utu
′
t] 6= Ik.

For this reason, we model the VAR as a “structural VAR” by means of the matrix

of contemporaneous relations Γ0, which we multiply to both sides to get

Γ0yt = Γ0Φ1yt−1 + Γ0Φ2yt−1 + · · ·+ Γ0Φpyt−p + Γ0ut

= Γ1yt−1 + Γ2yt−1 + · · ·+ Γpyt−p + wt

for t = 1, · · · , T (2.2.4)

where wt = Γ0ut are the “structural shocks” and Γ0 is such that these are orthog-

onal, that is, we have E[wtw
′
t] = Ik. Γ1, . . . ,Γp are called matrices of “structural”

coefficients. Eq.2.2.4 can be equivalently rewritten in matrix form as

Y Γ′0 = L(Y )Γ1′ + L2(Y )Γ′2 + · · ·+ Lp(Y )Γ′p +W (2.2.5)

If we take a closer look at the expression Γ0yt, we can appreciate what we mean

by “contemporaneous relations”: when a variable changes value, at the same time
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the value of the other variables changes by that same amount multiplied by the

respective entries of Γ0. This matrix is also referred to as un-mixing matrix, while

its inverse Γ−1
0 is the mixing matrix.

However, there exist infinite matrices that render the wt’s orthogonal. The prob-

lem of finding the appropriate Γ0 (and hence also finding the matrices Γ1, . . . ,Γp)

is called the identification problem, which we will address in section 3, where we

propose a data-driven algorithm able to retrieve the Γ0 matrix. In matrix form, the

structural residuals can be retrieved as W = UΓ′0, with

W :=



w′1

w′2
...

w′T


2.2.1 Impulse response structural analysis

Once the VAR has been identified, it is possible to recover the impulse response

functions. Eq.2.2.4 can be rewritten compactly in vector form as

Γ(L)



y1,t

y2,t

. . .

yk,t


= wt, (2.2.6)

where Γ(L) = Γ0−Γ1L−. . .−ΓpL
p is a k×k matrix operator and wt is a k-dimensional

vector of structural shocks, such that Σw := E[wtw
′
t] is diagonal and full rank, that is

Rank (Σw) = k. Eq.2.2.6 represents the structural form of the VAR that we want to

estimate. As we have pointed out, the problem is that the structural model cannot

be estimated directly, because the contemporaneous variables are endogenous and
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their estimation would be subject to bias. What we can estimate, however, is the

reduced form of the VAR,

Φ(L)



y1,t

y2,t

. . .

yk,t


= ut, (2.2.7)

which is the same as Eq.2.2.2, where Φ(L) = Ik − Φ1L − Φ2L
2 − . . . − ΦpL

p, with

p being the number of lags. The covariance matrix of the reduced form residuals

Σu = E[utu
′
t] is in general non-diagonal. As pointed out above, this implies that we

cannot study the effect of a shock on a variable without movements in the others,

since the reduced-form residuals are mutually correlated. In other words, we cannot

recover the structural shocks directly from the reduced form.

However, the reduced form can be interpreted as a linear transformation of the

structural model. Such transformation is represented by the un-mixing matrix Γ0,

and in particular by it inverse Γ−1
0 . Indeed, if we pre-multiply both sides of Eq.2.2.6

by Γ−1
0 , we can rewrite Φ(L) as

Φ(L) = Γ−1
0 Γ(L) = Γ−1

0 Γ0︸ ︷︷ ︸
Ik

−Γ−1
0 Γ1︸ ︷︷ ︸
Φ1

L− . . .− Γ−1
0 Γp︸ ︷︷ ︸
Φp

Lp, (2.2.8)

and the reduced-form residuals as a linear combination of the mutually uncorrelated

structural shocks:

ut = Γ−1
0 wt. (2.2.9)

Therefore, if Γ0 is known, we can recover the structural model by simply pre-

multiplying both sides of Eq.2.2.7 by Γ0, which describes the simultaneous relations

between the variables of the model. In this way, the response of each variable to the
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shocks, i.e. the impulse responses, are obtained as

Ψi =
∂(yt+i)

′

∂w′t
, i = 0, 1, 2, . . . , H, (2.2.10)

which is a k × k matrix of impulse response functions, with H being the maximum

temporal horizon of the shock propagation and Ψ0 representing the contemporaneous

responses to the shocks. Following Kilian and Lütkepohl (2017), we consider the

companion form

Yt = ΦYt−1 + Ut, (2.2.11)

where

Yt :=


(yt)

′

...

(yt−p+1)′

 , Φ :=



Φ1 Φ2 . . . Φp−1 Φp

Ik 0 . . . 0 0

0 Ik . . . 0 0

...
...

. . .
...

...

0 0 . . . Ik 0


, Ut :=



ut

0

...

0


,

and k is the total number of variables included in the model. The IRFs are obtained

as

Ψi = JΦiJ ′ Γ−1
0 , (2.2.12)

where J := [Ik, 0k×k(p−1)]. Therefore, provided that Γ0 is known, we can use a

consistent estimate of the reduced-form coefficients Φ (obtained for instance via

least-squares estimation) to retrieve the IRFs.

Once the structural coefficients and the impulse responses have been retrieved

for both the real-world and the agent-based data, it is possible to compare them, as

explained in section 2.5, to gauge to what extent the agent-based model is validated.
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2.3 The Factor Augmented VAR model

A well-known problem in the traditional specifications of VAR models is that only

a small amount of variables can be directly included in the model, as the number

of parameters to estimate rapidly increases with the number of included variables.

As a consequence, the choice of the variables to include is somewhat subjective and

exploits a thinner informative set than that of, for example, Central Banks and

policy-makers.

In their seminal work, Bernanke et al. (2005) proposed a Factor-Augmented Vec-

tor Autoregression (FAVAR) approach to overcome the problem of including a large

amount of information in a VAR model. This method allows to account for a large

part of the information contained in the data in a parsimonious way and it facili-

tates the problem of choosing which variables to include in the model, since a big

part of the information is summarized by the factors. Moreover, the factor approach

sometimes allows to get a more precise measure of given quantities which have a

clear theoretical definition but cannot be distinctly observed in reality. For instance,

Boivin and Giannoni (2006) employ factor models to directly deal with measure-

ment errors while estimating DSGE models for which a one-to-one correspondence

between the theoretical concepts and the actual observed variables does not exist.

Since a critical aspect of the methodology regards the choice of the variables to

include in the VAR, a factor-based approach is ideal for our validation procedure.

Indeed, the problem of choosing which variables to consider in the model is overshad-

owed since a big part of the information is included via the factors. It can therefore

be considered a more “global” validation approach, which takes into account all the

time series produced by the agent-based model, instead of being uniquely focused an

a given subset of variables.

We consider a FAVAR model where v variables are directly included as “observed”
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factors Y1,t, . . . , Yv,t. By adding the first, say z (in most applications, as in Bernanke

et al. 2005, simply one or two) “unobserved” or latent static factors F1,t, . . . , Fz,t, we

get the structural FAVAR model

Γ(L)



F1,t

. . .

Fz,t

Y1,t

. . .

Yv,t


= wt, (2.3.1)

where Γ(L) = Γ0−Γ1L− . . .−ΓpL
p is a (z+v)× (z+v) matrix operator and wt is a

(z+v)-dimensional vector of structural shocks, as in Eq.2.2.6. From a computational

point of view, the reduced-form estimation and the structural analysis can then be

performed in the same way as for the VAR model, with the main difference being

the interpretation of the results. That is, equations 2.2.2 to 2.2.12 are still valid and

it suffices to substitute y1,t, . . . , yk,t with F1,t, . . . , Fz,t, Y1,t, . . . , Yv,t.

2.3.1 Estimation of the static factors

Naturally, a necessary step for the implementation of a FAVAR model is the esti-

mation of the static factors. In what follows, we will denote by Yt the variables

of interest that we directly include in the model, by Xt all the N variables in the

dataset and by Ft the static factors. We consider two different procedures for the

estimation of the static factors. To begin with, both require that the time series

are made stationary, by applying suitable transformations, and re-scaled before esti-

mating the factors by principal component analysis. When the aim is studying the

properties of a dataset by analyzing the factors that can be extracted from it, as we
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will do in section 4.2.1, we apply PCA directly to Xt:

Xt = ΛFt + et, (2.3.2)

where Xt is N × 1, Ft is the r × 1 vector of relevant factors, where r is the optimal

number of static factors, and Λ is the N × r loading matrix. Λ̂ and F̂t are the PC

estimators of Λ and Ft. Several criteria have been proposed to determine the optimal

number of static factors r (see e.g. Bai and Ng 2002, Onatski 2010, Kapetanios 2010,

Ahn and Horenstein 2013 and Reijer et al. 2020).

Conversely, when we want to estimate the factors to include in the FAVAR, as

in section 4.5, we employ the two-step procedure proposed by Hae Hwang (2009)

as an alternative to the iterative procedure by Stock and Watson (2005). This

takes into account the information given by the “observable” factors Yt and ensures

orthogonality of Yt and Ft. In this case, we use the notation X̃t instead of Xt to stress

that the observable factors are treated separatly from the rest of the variables. If N

is the total number of variables in the full dataset and v is the number of observable

factors, we will have that X̃t is (N − v) × 1. Furthermore, we have that Ft will be

z × 1, since, in general, a different number of factors than r can be included in the

FAVAR.

Thus, as in Bernanke et al. (2005), we can write

X̃t = ΛfFt + ΛyYt + et. (2.3.3)

To estimate Λf , Ft,Λy we proceed as follows:

Step 1: Estimate Λy via least-squares as the coefficients of a linear regression of X̃t

on Yt

Λ̂y = (Y ′Y )−1Y ′X̃; (2.3.4)
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Step 2: Estimate Λf and Ft via PCA on the residuals of the previous regression,

X̃t − Λ̂yYt = ΛfFt + et, (2.3.5)

to obtain Λ̂f and F̂t.

2.4 The Dynamic Factor Model

A more sophisticated model based on macroeconomic factors is the dynamic factor

model (DFM), in which it is modeled that the factors have effect on Xt through their

lags too. The dynamic model is more realistic but harder to estimate than the static

model (Barigozzi and Luciani 2019). However, its estimation can be accomplished

by going through an equivalent static model, as illustrated below. The DFM is often

deemed better than the FAVAR for structural analysis and it has been argued that

it should be considered the natural tool for the validation of macroeconomic models

(Lippi 2019). Furthermore, it also represents an advantage over structural VAR or

FAVAR models where the researcher has to take a stance on the variables to include

which, in turn, determine the number of shocks (Breitung and Eickmeier 2006). The

comparison of the causal relations estimated by means of a DFM constitutes the

third and final approach of our validation procedure.

As in the previous section, we denote the static factors Ft while we now indicate

the dynamic factors with ft. Following Doz and Fuleky (2020), we consider the

state-space representation of the model:

Xt = Λ0ft + Λ1ft−1 + · · ·+ Λsft−s + et, (2.4.1)

ft = A1ft−1 + A2ft−2 + · · ·+ Apft−p + ut, (2.4.2)
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where A1, . . . , Ap are N × q matrices and ft is a vector of q stationary factors.

Eq.2.4.1 and Eq.2.4.2 are called measurement and state equations respectively. q ≤ r

is the optimal number of dynamic factors and, as for the number of static factors,

there exist many criteria in the literature to estimate it (see e.g. Bai and Ng 2007,

Amengual and Watson 2007 and Onatski 2009).

Note that from the dynamic Eq.2.4.1, if we let Ft = [f ′t , f
′
t−1, . . . f

′
t−s]

′ and Λ =

[Λ0,Λ1, . . . ,Λs] , we can recover its static equivalent given by Eq.2.3.2. Furthermore,

as we did for the standard VAR, we can cast the state equation in companion form

in the following way:

Ft = AFt−1 + Ut, (2.4.3)

where

Ft :=


(ft)

′

...

(ft−p+1)′

 , A :=



A1 A2 . . . Ap−1 Ap

Iq 0 . . . 0 0

0 Iq . . . 0 0

...
...

. . .
...

...

0 0 . . . Iq 0


, Ut :=



ut

0

...

0


,

and (as we do for the rest of this section) we have assumed for semplicity that p = s.

The simplest way to estimate the model is the two-step procedure proposed by

Reichlin et al. (2005) and Forni et al. (2009):1

Step 1: The static factors and the loadings are estimated by PC, obtaining F̂t and

Λ̂t;

Step 2: An estimate of the A1, . . . , Ap matrices is obtained by estimating a VAR on

the estimated factors

1Other, more sophisticated, ways to estimate a DFM include Doz et al. (2011), Doz et al. (2012)
and Barigozzi and Luciani (2019).
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F̂t = A1F̂t−1 + · · ·+ ApF̂t−p + ut. (2.4.4)

However, in this way, we only obtain reduced-form coefficients. When performing

structural analysis, we are interested in recovering the impact of q structural shocks,

which we denote wt, that drive the common factors and impact the variables in Xt.

That is, we look for the impulse response functions

Ψi =
∂(Xt+i)

′

∂w′t
, i = 0, 1, 2, . . . , H, (2.4.5)

which are N×q matrices, with H being the maximum temporal horizon of the shock

propagation and Ψ0 representing the contemporaneous responses to the shocks.

It is clear that with the above procedure we obtain estimates of Ft that are

r × 1. However, since F̂t includes estimates of the lagged factors, some of the VAR

equations are identities (at least asymptotically) and , therefore, the rank of the

covariance matrix of the residuals Σ̂u is q ≤ r, as N →∞ (Breitung and Eickmeier

2006). Nonetheless, we can obtain an estimate of the actual q × 1 innovations of

the dynamic factors as ût = Ĝη̂t, where the r × q matrix Ĝ is the matrix of the q

eigenvectors associated to the q largest eigenvalues of Σ̂u. These estimates can then

be used to identify the structural shocks wt that drive the common factors, by means

of suitable identification strategies:

ηt = Γ−1
0 wt, (2.4.6)

which is the equivalent of Eq.2.2.9.

Hence, the IRFs are

Ψi = ΛJAiJ ′G Γ−1
0 , (2.4.7)
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where J := [Ir, 0r×r(p−1)]. Therefore, provided that Γ−1
0 is known, we can use a

consistent estimate of the reduced-form coefficients A to retrieve the IRFs. Note

that, in this model, similar objects to the structural coefficients of VAR and FAVAR

models can be computed as ΛA1G Γ−1
0 , · · · ,ΛApG Γ−1

0 .

Note that in the DFM, the sign if the IRFs is undetermined as the Λ and G

matrices are estimated up to their sign, an issue which also reflects on the confi-

dence bands. To compute the confidence intervals for the DFM IRFs, we perform

a wild bootstrap on the VAR of the factors (see Eq.2.4.2) and then proceed to the

computation of the IRFs at every new iteration according to Eq.2.4.7. However, as

matrix G, the matrix of q eigenvectors, has to be recomputed at every new bootstrap

iteration, it is possible for the sign of its columns to flip for some of the iterations,

since eigenvectors are estimated with PCA up to their sign. This results in “wide”

confidence bands that are likely to show symmetry about zero.

Since both the IRF and the structural coefficients matrices have dimensions N×q

andN is large, it is customary to select only those entries corresponding to the impact

of the first dynamic innovations on some particular variables of interest in Xt.

2.5 Validation assessment

After the causal structures embedded in the real-world and in the agent-based data

have been recovered, either with a VAR, FAVAR or DFM model, the validity of the

model under validation is assessed by comparing these causal structures.

After the identification procedure, we have estimated the structural matrices ΓRWi

for i = 0, · · · , pRW and ΓABi for i = 0, · · · , pAB and the structural impulse responses

ΨRW
i for i = 0, · · · , H and ΨAB

i for i = 0, · · · , H.2 As a first validation assessment,

we employ the three similarity measures proposed by Guerini and Moneta (2017):

2Note that we are now using the notation of section 2.2, thereby indicating with Γ1, . . . ,Γp all
the structural coefficients.
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a sign-based similarity measure, Ωsign, which compares the signs of the estimated

structural coefficients; a size-based measure, Ωsize which compares the size of the

causal effects; and a conjunction measure, Ωconj, which jointly compares the sign

and the size of the causal effects. For completeness, we will compute these measures

on the reduced-form coefficients also.

As a preliminary step we define pmin = min{pRW , pAB} and select only the struc-

tural residuals for i = 0, · · · , pmin. The sign-based similarity measures is built by

means of the indicator function

ωsigni,jk =


1 if sign(γRWi,jk ) = sign(γABi,jk)

0 if sign(γRWi,jk ) 6= sign(γABi,jk)

where j and k are the row and column indexes of the structural coefficients. In prac-

tice, this assigns 1 if the agent-based model captures the same direction of causality

of the real-world estimates and 0 otherwise. The sign-based similarity measure is

therefore defined as

Ωsign =
(
∑pmin

i=1

∑k
j=1

∑k
k=1 ω

sign
i,jk )

k2pmin
. (2.5.1)

The second similarity measure tries to capture the extent to which the size of

the estimates in the simulated data are similar to the size of the estimates in the

real-world data. The indicator function in this case is

ωsizei,jk =


1 if γABi,jk ∈ [γRWi,jk − 2σ(γRWi,jk ), γRWi,jk + 2σ(γRWi,jk )]

0 if γABi,jk /∈ [γRWi,jk − 2σ(γRWi,jk ), γRWi,jk + 2σ(γRWi,jk )]

and the size-based similarity measure is computed as

Ωsize =
(
∑pmin

i=1

∑k
j=1

∑k
k=1 ω

size
i,jk )

k2pmin
. (2.5.2)
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Finally, the conjunction measure evaluates the extent to which the model rep-

resents both the direction and the magnitude of the causal relationships entailed in

the real-world data. The indicator function is

ωconji,jk =


1 if sign(γRWi,jk ) = sign(γABi,jk) ∧ γABi,jk ∈ [γRWi,jk − 2σ(γRWi,jk ), γRWi,jk + 2σ(γRWi,jk )]

0 if else

and the conjunction similarity measure is computed as

Ωconj =
(
∑pmin

i=1

∑k
j=1

∑k
k=1 ω

conj
i,jk )

k2pmin
. (2.5.3)

In addition to the similarity measures proposed by Guerini and Moneta (2017),

we introduce a new measure which looks at when the agent-based IRFs lie inside the

confidence bands computed for the real-world IRFs. Since most agent-based models

are built to perform policy exercises, we believe this to be the most appropriate

similarity measure to be used as a validation tool. Indeed, impulse response functions

allow to look at the effects of a shock in a variable on other variables, all else equal,

from which it is possible to draw policy recommendations. We call this the irf

similarity measure and it is based on the indicator function

ωirfi,jk =


1 if γABi,jk ∈ [5%γRWi,jk ,

95%γRWi,jk ]

0 if γAB0,jk /∈ [5%γRWi,jk ,
95%γRWi,jk ]

where the 5% and 95% superscripts denote the confidence bands of the impulse

responses, and it results in the similarity measure computed as

Ωirf =
(
∑H

i=1

∑k
j=1

∑k
k=1 ω

irf
jk )

k2H
, (2.5.4)

where H denotes the chosen horizon for the impulse response functions.
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All four similarity measures are bounded between [0, 1], which allows for an easy

interpretation of the results.
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3 Identification strategy

The R code relative to this section, as well as additional details and comments, are

available in the form of Rmarkdowns knitted to html at the following link:

https://drive.google.com/drive/folders/18OqK69Prpv3wvRDyREyrR1-BudPrOXQB?usp=sharing

The problematic nature of shock identification in Vector Autoregressive models seems

to have afflicted each and every implementation of this econometric technique since

its introduction in the macroeconomic literature (Sims 1980). For the purpose of

obtaining a structural representation of the economic mechanisms that they try to

capture with structural VARs, researchers have often found themselves in a position

in which they have to rely on a number of assumptions, mostly derived from economic

theory or based on a description of the economic system which is overly simplified.

However, most of these assumptions cannot be tested, leaving broad discretion in the

choice of the shock identification strategy. Recent developments in the VAR litera-

ture, which have placed emphasis on data-driven algorithms, have demonstrated that

it is possible to identify structural shocks by using only the distribution of reduced-

form shocks and taking advantage of the information provided by its higher-order

moments, making shock identification possible without the kinds of assumptions tra-

ditionally used in the literature (see e.g. Hyvärinen et al. 2010, Moneta et al. 2013

and Lanne et al. 2017). Yet, these approaches, rooted in independent component

analysis, do rely on a set of less theory-driven but nonetheless heavy assumptions,

such as independence and non-Gaussianity of the structural shocks (the latter of

which conveniently being testable). Furthermore, a crucial issue when recurring to

independent component analysis is given by the indeterminacy of the permutation

and scaling of the columns of the mixing matrix and the structural shocks, which is

typically solved by introducing additional assumptions, such as the acyclic structure

of the causal relations.
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In this section, we introduce the NGSI algorithm (short for non-Gaussian shock

identification). This data-driven algorithm is able to perform VAR identification

relying solely on the assumptions of independence and non-Gaussianity of the struc-

tural shocks. Indeed, this ICA-based algorithm does not require additional assump-

tions on the structure of the matrix of contemporaneous causal relations as it is able

to infer it from the data and accordingly apply the most appropriate identification

scheme. With an approach more typical of Data Science rather than Economics,

it combines independent component analysis, some of the intuitions behind VAR-

LiNGAM (Shimizu et al. 2006, Moneta et al. 2013), and the traditional recursive

identification scheme, to achieve shock identification in a general setting. Following

this approach, we perform an extensive simulation study to test the performance of

the algorithm under different specifications of the mixing matrix. We will show that

the NGSI algorithm performs well (“correctness” ranging from 55 to 100%) across

a wide variety of data generating processes, where we vary the number of variables,

the number of lags and the structure of the mixing matrix.

We first review the standard recursive identification scheme via Cholesky decom-

position and how VAR identification can be achieved via independent component

analysis. We introduce MaxDiag, a simple identification scheme based on ICA, and

we review VAR-LiNGAM. By combining these techniques, we show that it is possible

to obtain five different identification algorithms. In an extensive simulation study

(which serves as a basis for the development of the NGSI algorithm), we test these

algorithms against different structures of the mixing matrix, which in turn imply

different assumptions on the contemporaneous relations among the variables. We

do this by artificially generating data according to a S-VAR process where we vary

the structure of the mixing matrix. We then estimate the VAR by OLS and use

the reduced-form residuals to obtain estimates of the mixing matrix via the consid-
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ered identification algorithms, and, after having defined some convenient metrics,

we study under which conditions each identification scheme is able to retrieve such

matrix correctly (and how precisely). To the best of our knowledge, this is the first

study of this kind in the VAR literature.

3.1 The recursive identification scheme

A common approach to solve the identification problem (see section 2.2) is to im-

pose a sufficient number of restrictions to the entries of Γ0 in order to recover the

unconstrained ones from the estimates Φ̂1, . . . , Φ̂p, Σ̂u. In particular, it is custom-

ary to assume that the simultaneous relationships between the variables are acyclic,

meaning that if we have three variables A,B and C, if A influences B (i.e. if vari-

able B responds to a shock in A), then variable B can only influence C and C has

no contemporaneous influence on the previous variables, even if it reacts to shocks

in A and B. This assumption imposes that there are no contemporary feedbacks

in the system and that there exists a precise causal ordering of the variables. In

practice, this is equivalent to imposing that Γ0 is lower triangular, given a particular

ordering of the variables. By doing so, Γ−1
0 can be unambiguously identified through

the Cholesky factorization of Σ̂u and the particular contemporaneous ordering is

usually chosen by relying on prior economic knowledge. This technique has perhaps

been the most popular way to identify a structural VAR models, as the Cholesky

factorization of the variance-covariance matrix of reduced-form residuals is an effi-

cient and straightforwardly implementable way to “orthogonalize” the reduced-form

errors, that is, to disentangle wt from the reduced-form innovations ut. However, it

must be stressed that this identification scheme is built upon the a priori imposition

of a whole causal chain with a rigid, recursive causation order, deriving from the

computational restriction imposed by the Cholesky factorization.
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Recall (see Eq.2.2.4 and successive) that we want to recover wt such that E[wtw
′
t] =

Ik. If we substitute wt = Γ0ut to get E[wtw
′
t] = E[Γ0utu

′
tΓ
′
0] = Γ0E[utu

′
t]Γ
′
0, we have

that the middle element of this expression, E[utu
′
t], can be estimated by the sample

variance of the reduced-form residuals, Σ̂u. The Cholesky factorization is a decompo-

sition of a Hermitian, positive-definite matrix into the product of a lower triangular

matrix and its upper triangular transpose. Since Σu is a variance-covariance matrix,

it is indeed Hermitian and positive-definite and it can therefore be decomposed as

PkP
′
k with Pk being lower triangular. Therefore, if we take Pk as our choice for Γ−1

0 ,

that is we have Γ0 = P−1
k , we get E[wtw

′
t] = Γ0E[utu

′
t]Γ
′
0 = Γ0Γ−1

0 Γ′−1
0 Γ′0 = Ik, which

is exactly what we are looking for. Therefore, the matrix Γ0 can be estimated as the

inverse of the lower triangular factor (hence also lower triangular) of the Cholesky

decomposition of the variance-covariance matrix of reduced-form residuals.

However, as remarked above, the choice of a lower triangular Γ0 introduces a

recursive structure among the variables. Consider for example a VAR with three

variables where the variables are ordered simply as [y1 → y2 → y3], we would have

Γ0yt = Γ1yt−1 + · · ·+ Γpyt−p + Γ0ut, (3.1.1)

and in matrix form


a 0 0

b c 0

d e f



y1,t

y2,t

y3,t

 = Γ1


y1,t−1

y2,t−1

y3,t−1

+ · · ·+ Γp


y1,t−p

y2,t−p

y3,t−p

+


a 0 0

b c 0

d e f



u1,t

u2,t

u3,t



= Γ1


y1,t−1

y2,t−1

y3,t−1

+ · · ·+ Γp


y1,t−p

y2,t−p

y3,t−p

+


w1,t

w2,t

w3,t

 ,
(3.1.2)
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which, multiplying both sides by Γ−1
0 , becomes


y1,t

y2,t

y3,t

 = Φ1


y1,t−1

y2,t−1

y3,t−1

+ · · ·+ Φp


y1,t−p

y2,t−p

y3,t−p

+


u1,t

u2,t

u3,t



= Φ1


y1,t−1

y2,t−1

y3,t−1

+ · · ·+ Φp


y1,t−p

y2,t−p

y3,t−p

+


a 0 0

b c 0

d e f


−1 

w1,t

w2,t

w3,t

 .
(3.1.3)

This means that a structural shock in y1,t (that is, a change in w1,t) entails a

contemporaneous effect on y1,t, y2,t and y3,t; a shock in y2,t entails a contemporaneous

effect on y2,t and y3,t but not on y1,t, which is affected only after one lag (through

Γ1y2,t−1); a shock in y3,t entails a contemporaneous effect only on y3,t itself, as y2,t

and y3,t are affected only after the first lag. Hence y1,t can be referred to as a “slow

moving variable” (since it takes time to react to the shocks in the other variables),

while y3,t can be referred to as a “fast moving variable.” Since under this scheme the

diagonal elements of Pk correspond to the square roots of the diagonal elements of

the variance-covariance matrix Σu, we have that Γ0 is chosen so that the structural

shocks represent one standard deviation of the time series of reduced-form shocks.

Since the Cholesky identification scheme can correctly retrieve the matrix Γ0

only if the true structure is indeed recursive and the ordering of the variables is

specified correctly, this approach is problematic for a number of reasons. As Kilian

and Lütkepohl (2017) put it, the credibility of an approach that imposes a recursive

causal architecture without any clear order of the variables in mind is undermined in

the first place. Furthermore, this is aggravated by the fact that the number of possible

orderings grows with the factorial of the number of variables, and, finally, even if all
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the permutations lead to the same impulse responses, this does not prove that every

identification strategy is bound to lead to the same results. It simply shows that all

recursive identifications provide the same results, but it gives no evidence that the

model should be recursive in the first place. This is why this approach has inspired a

series of critic contributions to the literature that take explicit aim at the fact that it

seems to be built on the (often quite misled) confidence in the data’s ability to speak

for themselves but which in practice relies on a set of assumptions that are extremely

difficult to justify within real-world applications (Cooley and LeRoy 1985).

3.2 Identification via independent component analysis

In recent years, we have observed the flourishing of a new strand of literature that

bases the identification of structural VARs on the assumption of non-Gaussianity

of the shocks (Gourieroux, Monfort, et al. 2014; Moneta et al. 2013). Indeed, if

the data are non-Gaussian, which is not uncommon in many econometric studies

(see for example Lanne and Lütkepohl 2010 and Lanne and Saikkonen 2013), it is

possible to exploit higher-order statistics of the reduced-form residuals to identify

the VAR. Under the additional assumption of independence of the shocks (instead

of simple orthogonality) the identification can be obtained by applying independent

component analysis.

Independent component analysis (ICA) is a popular computational method for

separating a multivariate signal into additive subcomponents. Given a data matrix

X, the aim is to factor it as X = SA, where A is a matrix of coefficients and S is

a matrix whose columns are independent. The interpretation that is often given is

that the columns of S are unobserved independent source signals that are linearly

combined together into the observed signals X. Under this generative model, the

observed signals in X will tend to be more Gaussian than the source components (in
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S) due to the Central Limit Theorem. Indeed, when applying ICA, a key assump-

tion is that the source signals are in fact non-Gaussian (at most one column of S is

allowed to be Gaussian), since otherwise it would not be possible to decompose X

correctly and ICA would not retrieve the original, correct, S. A computationally ef-

ficient algorithm that performs independent component analysis is “fastICA”, which

proceeds as follows:

1. The data are centered by subtracting the mean of each column of the data

matrix X;

2. The data matrix is then “whitened” (that is, transformed into a new set of

variables which are uncorrelated and which have unitary variance) by project-

ing the data onto its principal component directions. This gives XK, where

K is a matrix of eigenvectors of X;

3. Finally, the algorithm estimates a matrix Q such that XKQ = S, under the

constraint that Q is orthonormal. Among the infinite possible such matrixes,

Q is chosen in order to maximize the non-Gaussianity of S, as measured by

its Negentropy. This iterative step is done by initially setting a random Q

and adjusting it to maximize Negentropy at each iteration until convergence is

reached. We have that our desired un-mixing matrix is given by A−1 = KQ.3

If we take X = U , S = W and A = (KQ)−1 = Γ′−1
0 (from which Γ−1

0 = A′),

we can see that our identification problem fits perfectly in this framework: we have

X = SA = S(KQ)−1 which is equivalent to U = WΓ′−1
0 .

As stated above, we have that the two pivotal assumptions of ICA regarding

the source signals are their independence (which fits well with the SVAR framework,

where the structural shocks are required to be orthogonal) and their non-Gaussianity.

3For further details see Hyvärinen (1999) and Hyvärinen and Oja (2000).
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This second assumption can be tested prior to performing the decomposition by

testing Gaussianity (for example with the Jarque-Bera, Shapiro-Wilk or Shapiro-

Francia tests) on the reduced form residuals ut, thank to the Lévy-Cramér theorem

which states that, given some independent random variables, their sum is normally

distributed if and only if each of them is individually normally distributed.

Finally, it must be pointed out that, since S is unobserved, ICA identifies the

matrix A up to the scale, sign and permutation of its rows. Hence, Γ−1
0 is identified up

to the scale, sign and permutation of its columns. This issue, while often disregarded

in signal processing, is very relevant to the solution of the identification problem in

SVARs. A rescaling of the columns of Γ−1
0 can be interpreted simply as a rescaling

of the structural shocks and it is not of great concern. Contrarily, a wrong sign and

permutation of the columns of Γ−1
0 implies a wrong matching of the variables to their

contemporaneous relations (and hence a wrong matching to their structural lagged

relations), therefore invalidating the whole identification. To solve the permutation

and sign issues some refinements of ICA specific for VAR applications have been

proposed.

3.2.1 A simple ICA identification algorithm

We now propose a first simple criterion to solve the indeterminacies of the ICA

estimation.

Since in the SVAR setting the Γ0 matrix represents the contemporaneous relations

among variables, it could seem reasonable to expect that the biggest element in each

row should be the diagonal element. In other words, we could expect that each

variable reacts more to its own shock rather than to the shocks of the other variables.

If the biggest element in each row of Γ0 is the diagonal one, the same holds for Γ−1
0 .

We can therefore solve the permutation issue by setting the columns of Γ−1
0 according

to this criterion. As for the sign issue, for better interpretability, we require that
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the diagonal element of each column is positive. We can do this simply by switching

the sign of each column for which the diagonal element is negative. Furthermore,

we normalize the estimated matrix so that the variance-covariance matrix of the

estimated structural shocks is the identity matrix. In the rest of this section we will

refer to this identification algorithm as “MaxDiag”.

We are well aware that this simple algorithm alone cannot constitute a solution

to the identification problem, as in many settings the assumption of “big diagonal”

(that is, that each variable reacts more to its own shock rather than to the shocks of

the other variables) is implausible. Nonetheless, it will prove useful in building the

NGSI algorithm.

3.2.2 VAR-LiNGAM

An identification algorithm that relies on ICA that has enjoyed success is the VAR-

LiNGAM algorithm, first introduced by Shimizu et al. (2006) and developed by

Moneta et al. (2013). It relies on the assumption of a recursive structure and it is

able to infer the ordering of the variables in a data-driven fashion.

Unlike the previous algorithm, VAR-LiNGAM works with the matrix Γ0 and

not Γ−1
0 , however this is of course not a substantive difference, as it only entails

that the indeterminacy is that of the permutation and sign of the rows instead of

that of the columns. In addition to the previous algorithm, it also standardizes

the rows of the Γ0 matrix so as to have all ones on the diagonal. Then, it looks

for the row permutation that gives the matrix which is closest as possible to lower

triangular. The row ordering that gives such matrix is taken as the order of the

recursive structure and the upper part of the matrix is pruned (coefficients set to

zero) so that the resulting matrix is actually lower triangular. Finally, the rows are

set back to their original order. In detail, the steps of the algorithm are the following:
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1. Perform fastICA (or another suitable ICA algorithm) on the matrix of residuals

U and get an initial estimate of Γ0;

2. Among all the possible row permutations of Γ0, choose the one that maximizes

the elements on the diagonal. This is done in practice by calculating the sum

of the absolute value of the reciprocal of the elements of the diagonal;

3. Divide all rows by the corresponding diagonal element to obtain ones on the

diagonal;

4. Take G0 = Ik − Γ0, which is required to be strictly lower triangular and, in

general, with k2 − k non-zero entries. The aim is to find the combination of

k2−k
2

coefficients (to be put in the upper triangular part of the matrix) that

when summed give the lowest possible quantity. To do this, try all the possible

Zk permutation matrices and compute the sum of the upper triangular part

of ZkG0Z
′
k. Choose the Zk matrix that gives the “smallest” upper triangular

part;

5. Prune (set to zero) the upper triangular elements of ZkG0Z
′
k. The idea behind

this step and the previous is that we want to set to zero the minimal amount

of coefficients of Γ0 that induce a recursive structure. Furthermore, we prefer

to prune coefficients that are already small to begin with;

6. Get back to G∗0 = Z ′kZkG
∗
0Z
′
kZk, where G∗0 is the pruned version of G0;

7. Get Γ∗0 = Ik +G∗0;

8. Reorder the Γ0 matrix according to the row permutations found in step 2 and

invert the matrix to get Γ−1
0 .

It must be noted that, because of the pruning, the estimated Γ−1
0 matrix does

not render the structural coefficients completely independent. This shortcoming is
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more severe the less the “true” Γ−1
0 is lower triangular, which entails larger pruning.

Conveniently, in applications it is straightforward to check the magnitude of the

pruning and eventually insert a warning as additional output of the algorithm should

the pruning be too big.4

3.3 Testing the identification algorithms against different

mixing matrices

We have presented three schemes to estimate the Γ−1
0 matrix, which can simply

be treated as algorithms: the Cholesky decomposition of the variance-covariance

matrix of the reduced-form residuals, MaxDiag and VAR-LiNGAM. As we have

seen, a crucial issue with the Cholesky scheme is given by the indeterminacy in the

permutation of the columns. However, since the VAR-LiNGAM algorithm is able to

retrieve the recursive structure of the mixing matrix (when it exists), we can use it

to inform the other two algorithms. Indeed, as a byproduct, VAR-LiNGAM gives an

estimate of the recursive ordering of the variables and it is straightforward to obtain a

fourth algorithm by ordering the variables according to the order estimated by VAR-

LiNGAM and then running a standard Cholesky decomposition. Since the same can

be done with the MaxDiag algorithm by permuting the columns accordingly, we end

up with five identification algorithms.

The problem in real-world VAR applications is that the Γ0 matrix is never ob-

served and therefore the researcher has to rely on assumptions on its structure (that

is, on the magnitude and sparseness of its coefficients) to justify the use of a given

identification strategy. However, it is possible to assess the performance of each iden-

tification scheme by means of a simulation study. Indeed, we compare how well each

4In this particular application we follow Moneta et al. (2013) so as to get a warning if the sum of
the squared pruned coefficients divided by the sum of all the squared coefficients of the un-pruned
matrix is > 0.05.
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of the five algorithms estimates the Γ−1
0 matrix under its different possible specifica-

tions, by artificially generating the mixing matrix and the corresponding VAR data

several times and testing how well (on average) each identification scheme performs.

We will investigate the performance of the five algorithms when the matrix is lower

triangular, when it has a different recursive structure and when it does not have

a recursive structure. Furthermore, we will distinguish the cases when the biggest

element (in absolute value) in each column is the one relative to the contemporane-

ous relation of a variable with itself and when this is not the case for at least one

variable. In practice, this is obtained by setting the biggest element in each column

on the main diagonal before permuting the columns. For brevity, we refer to this

latter classification as “big diagonal” versus “small diagonal” (even though it could

arguably be referred to more clearly as big contemporaneous relation versus small

contemporaneous relation of each variable with itself).5

We now discuss why these are the exhaustive dimensions that we need to explore

in our simulation study by briefly going over the identification algorithms we want

to test. A priori, we expect the following:

� Cholesky. Imposes a lower triangular structure and works well both when the

diagonal elements of the mixing matrix are “big” or “small”. When the true

structure is recursive but not lower triangular, to use this scheme it is necessary

to specify the ordering of the variables, either based on economic theory or as

estimated by the VAR-LiNGAM algorithm. It fails to identify the VAR when

the structure of the mixing matrix is not recursive.

� MaxDiag. Does not impose a particular structure: it works well both with a

recursive and a non-recursive structure of the mixing matrix. It is always able

to estimate correctly the coefficients of the mixing matrix, however, to correctly

5Examples of big diagonal and small diagonal mixing matrices are given in Appendix C. (figures
C.8, C.9, C.10 and C.11, C.12, C.13 respectively).
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solve the permutation and sign indeterminacies it requires the diagonal of the

true mixing matrix to be “big”.

� VAR-LiNGAM. Imposes a recursive structure and works well both when the

diagonal elements of the mixing matrix are “big” or “small”. To retrieve the

recursive ordering of the variables, it exploits the sparseness of the mixing ma-

trix as estimated via ICA. Since it always imposes a recursive structure, it fails

when the true structure of the mixing matrix is not recursive. Conveniently,

when running, it also informs if the pruning which is being performed is large,

which is an indication that the true structure might not be recursive.

These a priori expectations are summarized in Tab.1, with the checkmarks indi-

cating that the algorithm performs the identification correctly under a given structure

of the Γ−1
0 matrix.

Γ−1
0 Cholesky Cholesky + order MaxDiag MaxDiag + order VAR LiNGAM

Big diagonal Lower triangular 3 3 3 3 3

Other recursive structure 7 3 7 3 3

Not recursive 7 7 3 7 7

Small diagonal Lower triangular 3 3 7 7 3

Other recursive structure 7 3 7 7 3

Not recursive 7 7 7 7 7

Table 1: A priori expectations on the performance of the five identification
algorithms.

At this point the crucial question is how to assess the identification schemes

during the simulation study, that is, how to compare the true Γ−1
0 with the estimate

Γ̂−1
0 .6 To this aim we define five distance measures:

◦ Total squared error (TSE): the sum of the squared difference of each entry of

the true and the estimated matrices. We can interpret this measure as the

overall precision in the estimate.

6We adopt a simple normalization to make the true and the estimated mixing matrices readily
comparable. That is, we rescale the columns of the matrices (and possibly flip their sign) so that
the entries corresponding to the contemporaneous relation of each variable with itself take on the
value 1.
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◦ Percentage of correct sign: how many entries of the estimated matrix have

(in percentage terms) the same sign as the corresponding entries of the true

matrix;

◦ Percentage of close-to-correct size: how many entries of the estimated matrix

are (in percentage terms) less than two standard deviations apart from the cor-

responding entries of the true matrix. The standard deviations are calculated

on all the entries of the true matrix. This can be seen as an additional measure

of estimate precision: while the TSE looks at how precise the overall estimate

of the matrix is, this measure looks at the percentage of entries of the matrix

can be considered “precise”;

◦ Percentage of correct contemporaneous relations: how many contemporaneous

relations are correctly identified (in percentage terms). In practice, given the

normalization we adopted, this corresponds to checking where the unitary en-

tries are located in the estimated matrix with respect to where they are located

in the true matrix;

◦ Overall similarity. This final distance measure tries to capture what is generally

considered important in the estimation of the Γ−1
0 matrix. In most cases, when

implementing a SVAR model, we are not interested in retrieving the exact

coefficients of the contemporaneous relations matrix, but rather on estimating

a matrix that is “qualitatively” similar to the true one. By this, we mean that

we want the sign of the entries of the matrix to be correct and that we want

them to be “close enough” in magnitude to their real counterpart.

It can be considered a sort of “conjunction measure” of some of the other four

measures and we will take it as an indicator of overall correct identification. It

can take on values 0 and 1 and it is implemented in the following way:
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1. Classify as “not correct” any entry of the estimated matrix that does not

lie within two standard deviations of its true counterpart;

2. Then, among the remaining entries, actually classify as “correct” only

those that have either the same sign or that are very close (in size) to

their true counterpart and classify as “not correct” any other entry.7 The

idea here is that if the true and estimated coefficients are both very small,

it does not matter if their sign differs.

3. Finally, we classify as “overall correct” an estimate of Γ−1
0 in which at

most one entry has individually been classified as “not correct” in steps

1 and 2.

In addition to these five measures, we will pay special attention to the additional

info produced by the VAR-LiNGAM algorithm. In this respect, we do two things:

the first is counting how many times (on average) the ordering of the variables

is estimated correctly; the second is looking at the warning with which it signals

whether the pruning being made is judged to be “too big” and therefore that the

true mixing matrix might not be recursive.

To test the performance of the five algorithms, we artificially generate data from

a SVAR process of which we store the true mixing matrix (labeled according to its

structure) used for each new data generation and compare it to the estimates given

by the algorithms by means of the distance measures. We perform the reduced-form

estimation by OLS and we use the estimated reduced-form residuals to obtain an

estimate of the mixing matrix with each identification algorithm. For each new data

generation, the reduced form coefficients and the entries of the matrix of contempo-

raneous relations are randomly sampled (from a normal and a uniform distributions

respectively) and the stationarity of the process is ensured by discarding all those

7In this application we set a threshold of 0.1 to the allowed difference in size.
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simulations where unit roots are displayed and replacing them with new simulations.

We here consider reduced-form residuals that follow a uniform distribution.

3.3.1 Simulation results

We report the results of the simulation study in Appendix A. Tables A.12 through

A.16 report the computed distance measures: for each relevant structure of the

mixing matrix Γ−1
0 we average the result obtained for each of 500 Monte Carlo

simulations. For simplicity, for the rest of this section, we will refer to the considered

structures of the mixing matrix as structures a) to f). For brevity, we only present the

results obtained considering a data generating process of a SVAR with three variables

and three lags. Nonetheless, the main results can be generalized to different numbers

of variables and/or lags.

a) Lower triangular Γ−1
0 with big diagonal. We have that the Cholesky

and MaxDiag are the most precise identification methods in this case, both

under the TSE and the size measures. As for the sign measure, we have that

the two MaxDiag and MaxDiag + order algorithms suffer from the fact that

they do not set any coefficient to zero (even though some might be very close

to zero). Given this structure of the mixing matrix, Cholesky and MaxDiag

always identify correctly the contemporaneous relations. Finally, the Cholesky

and MaxDiag always output a matrix that is considered “correct” according

to our measure, while the other algorithms instead fail in those few (8% in

this simulation) cases when the ordering of the variables estimated by VAR-

LiNGAM is not the correct one.

b) Other recursive structure Γ−1
0 with big diagonal. In this case we can

see that only the algorithms that exploit the ordering estimated by the VAR-

LiNGAM perform well. This is because the Cholesky and the MaxDiag algo-
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rithms always output a lower triangular matrix and a matrix with the biggest

elements on the diagonal respectively. Since in this case the true Γ−1
0 matrix is

recursive but not lower triangular, this can be seen as a wrong specification of

the recursive ordering of the variables. However, it must be noted that since

the VAR-LiNGAM does not always retrieve the correct recursive ordering, it

is possible for the other three algorithms to also fail. Nonetheless, we have

that, for every case in which the VAR-LiNGAM estimates the order correctly,

the matrices estimated by the three algorithms informed by it are considered

“correct” by our distance measure.

c) Not recursive Γ−1
0 with big diagonal. We can see that in this case the

MaxDiag algorithm is the one that performs best by far. This is because the

Cholesky and VAR-LiNGAM always impose a recursive structure, therefore

setting to zero some coefficients which might in general be different from zero.

Since the diagonal elements are bigger than the other elements, the MaxDiag

algorithm is able to correctly solve the permutation and sign issues. It must be

noted that the Cholesky algorithm seems to identify all the contemporaneous

relations correctly, however, this simply depends on the column normalization

we have adopted and should not be interpreted as a “merit” of the algorithm.

We also show that the VAR-LiNGAM algorithm fails in retrieving the correct

ordering of the variables (its guess rate is close to that of a random guess, which

is 1/6, as there are 6 possible permutations with three variables). Nonethe-

less, it is able to correctly signal in the vast majority of cases that the actual

structure is not recursive (see Tab.A.18, second column).

d) Lower triangular Γ−1
0 with small diagonal. Since the structure is recursive,

the Cholesky and VAR-LiNGAM algorithms perform well. However, since the

biggest element of each row is not on the diagonal, the MaxDiag does not

42



solve correctly the permutation and sign indeterminacies. It must be noted

that VAR-LiNGAM can sometimes fail to retrieve the correct ordering of the

variables, which is what makes the measure obtained for the Cholesky + order

and the MaxDiag + order algorithms respectively slightly worse than Cholesky

and MaxDiag. It is striking how big the TSE is for the three algorithms

based on independent component analysis. This has to do with the adopted

normalization, since some coefficients might result in being multiplied by very

small quantities thus giving rise to a very big squared error. This is why just

very few wrong orderings estimated by VAR-LiNGAM are enough to make

the TSE very large. However, by checking the other similarity measures, we

can confirm that the VAR-LiNGAM is actually estimating the mixing matrix

correctly most of the times.

e) Other recursive structure Γ−1
0 with small diagonal. As in the case of a

big diagonal, the order retrieved by the VAR-LiNGAM algorithm is effective in

enhancing the Cholesky scheme. However, it does not work well for MaxDiag in

general, since this fails in identifying the correct permutation of its columns as

it always sets them so as to have the biggest entries on the diagonal. Therefore,

since in this case the diagonal is “small”, the MaxDiag and the MaxDiag +

order algorithms will in general not work. Similarly to case b), VAR-LiNGAM

shows a very high TSE, even though it is correctly estimating the mixing matrix

in 98% of the instances.

f) Not recursive Γ−1
0 with small diagonal. We have that in this case all

the algorithms fail to correctly estimate the Γ−1
0 matrix, and, as expected, the

correct ordering is not retrieved by the VAR-LiNGAM algorithm, and, as in

the analogous case of a big diagonal, it is close to a random guess. As in the

case of a big diagonal, the correct contemporaneous relations identified by the

43



Cholesky and MaxDiag algorithms are due to the way in which we constructed

the mixing matrix and should not be interpreted as a “merit” of the algorithms.

Nonetheless, VAR-LiNGAM is able to signal in roughly two-thirds of the cases

that the structure is not recursive.

We now look at the results obtained for two of the distance measures we have used

in more detail. The total sum of squared residuals (see Tab.A.12) is an important

metric since it gives insight on the precision of our estimates of the mixing matrix.

That is, given two algorithms that both estimate the mixing matrix “correctly” given

a particular structure, by looking at the TSE we can gauge which among the two

better approximates the true matrix. An important aspect is represented by what

degree of similarity, in terms of total squared distance, we should consider as “good”

performance. By comparing the TSE and the a priori expectations table (Tab.1),

in this application a threshold around 0.8 or 0.9 seems reasonable. It strikes out

that the VAR-LiNGAM, contrarily to our expectations, seems to show a problem in

terms of TSE with respect to the d) and e) structures. As we have seen, this can be

attributed to the failure in retrieving the true recursive ordering in some of the Monte

Carlo runs. When the Cholesky (Cholesky + order) and the MaxDiag (MaxDiag +

order) algorithms perform a correct estimation (according to our overall correctness

measure), Cholesky (Cholesky + order) is always at least as precise as MaxDiag

(MaxDiag + order) and VAR-LiNGAM is the least precise. This is true both in

terms of TSE and in terms of the “size” measure (see Tab.A.12 and Tab.A.14).

We then look at our measure of overall estimate correctness (see Tab.A.16). We

can see that it reproduces very well our table of a priori expectations. Furthermore,

it does so with a “large margin”, in the sense that not only we can find a thresh-

old that classifies all the entries exactly as in that table (TRUEs corresponding to

checkmarks), but we can also find a very large confidence band and still obtain the
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same result. That is, we can classify as a check mark every entry of the table ≥ 0.92

and as a cross mark every entry ≤ 0.22 and still perfectly reproduce the table of a

priori expectations (see Tab.A.17 in comparison with Tab.1). This means that no

entry takes on values that are between these thresholds, which indicates that our

measure captures well what we commonly mean when we say that a particular iden-

tification scheme “estimates the mixing matrix correctly given its structure.” This

result allows us to confidently use the same measure to test the NGSI algorithm, as

explained in the next section.

Finally, we summarize the additional information provided by the VAR-LiNGAM

algorithm in Tab.A.18. That is, in percentage terms, how many times the correct

order is retrieved and how many times a message that signals the recursiveness of

the structure is given. We can see that the performance of the VAR-LiNGAM, in

terms of identifying the correct ordering of the variables, is well above 90% when

the structure is recursive and it is close to random when it is not. In terms of

correctly detecting recursiveness it is close to 100%, giving however roughly 30% of

false positives when the diagonal is “small” (while giving a false positives rate of

only about 5% when the diagonal is “big”).

In summary, we have that the best algorithm to use is the Cholesky (possibly

refined by the ordering estimated with VAR-LiNGAM) in all cases except when we

have a non-recursive structure. When we have a non-recursive structure and a “big”

diagonal we should use MaxDiag, while if we have both a non-recursive structure and

a “small” diagonal, none of the algorithms considered will retrieve the mixing matrix

correctly. Our best guess would still be MaxDiag, since it estimates the entries of

the matrix correctly, but we would have no way to solve the permutation and sign

issues in a fully correct manner. Therefore, if we knew beforehand the structure of

the mixing matrix we would proceed as follows:
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a) first-best: use Choleky; second-best: use MaxDiag; third-best: use Cholesky

+ order (this is third-best since the order might not be estimated correctly by

VAR-LiNGAM).

b) first-best: use Cholesky + order; second-best: use MaxDiag + order.

c) first-best: use MaxDiag.

d) first-best: use Choleky; second-best: use Cholesky + order (again, second-best

since the order might not be estimated correctly).

e) first-best: use Cholesky + order; second-best: use VAR-LiNGAM.

f) best try: use MaxDiag.

Note that, as a preliminary step, we should always check that the reduced-form

residuals are non-Gaussian (or that at most one of them is) since otherwise the

algorithms based on ICA cannot be used reliably.

3.4 NGSI: a data-driven algorithm for shock identification

In this part of the section, we present NGSI (short for Non-Gaussian Shock Identifi-

cation), a data-driven algorithm that performs VAR identification, and we show its

performance across a wide variety of data generating processes. This algorithm is

innovative in that it is able to infer the structure of the Γ−1
0 matrix and accordingly

apply the most appropriate identification scheme, thereby not requiring any of the

a priori assumptions on the structure (such as the recursiveness of the contempora-

neous relations or the magnitude of the relations of each variable with itself, that

is, the elements on the diagonal of the mixing matrix) which are instead necessary

when applying the identification schemes that we have presented so far.
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Similarly to what we did in section 3.3, to test the performance of our algorithm,

we generate data from a VAR process which we restrict to be stationary, we store the

mixing matrix (labeled according to its structure) used for each new data generation,

we estimate a VAR by OLS from the generated data and use the reduced form

residuals to estimate the mixing matrix via NGSI. We finally check the performance

of the algorithm by comparing the true and the estimated Γ−1
0 matrices via the

“correctness” distance measure. We do this for a very general set of data generating

processes, varying both the number of variables and the number of lags. We here

work in a setting where the reduced-form residuals are non-Gaussian. However, the

algorithm is designed to test the Gaussianity of the residuals and to warn if more

than one vector of residuals is found to be Gaussian, in which case, as we show,

it can fail to retrieve the correct mixing matrix, since it is rooted in independent

component analysis. The generalization of the algorithm to the case of Gaussian

residuals is left for future research and a brief discussion on the topic will be given

at the end of this section.

We begin by presenting a simple benchmark algorithm, which is at the core of

NGSI, and we will then illustrate a series of ideas that will help shaping the final

algorithm. The benchmark algorithm uses the Cholesky + order scheme when VAR-

LiNGAM signals that the true structure is recursive, and MaxDiag otherwise. That

is:

BENCHMARK ALGORITHM

1. Test Gaussianity:

� if more than one vector of residuals is Gaussian, WARN and STOP.

� if at most one vector of residuals is Gaussian proceed,
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2. Test recursiveness:

� if the estimated structure is non-recursive, use MaxDiag and STOP.

� else use Cholesky + order and STOP.

As might be expected, a first problem with this simple algorithm is that it is

subject to the possible failure of VAR-LiNGAM in recovering the true ordering of

the variables when the true mixing matrix is of the type a), b), d) or e). However,

in cases a) and d), this needs not be the case since the true ordering is simply the

ordering of input of the data. In other words, the true structure is simply lower

triangular. Therefore, if we were able to infer when we are in case a) and d), distin-

guishing them from cases b) and e) respectively, we would be able to significantly

improve our algorithm. This can be done by comparing the outputs of the different

identification schemes. In fact, when Cholesky and MaxDiag give the same result,

the only possibility is that the true structure is of the type a) (see Tab.1). The

implementation of a similar criterion distinguishing case d) from e) is left for future

research.

Furthermore, we have no way of distinguishing cases c) and f). This is a crucial

issue, since when the true mixing matrix if of the f) kind, it is likely that our

identification will fail. Therefore, we refine our algorithm by introducing a warning

when the mixing matrix is identified as f). Such warning is given when the Γ−1
0

matrix as estimated by MaxDiag has entries off the diagonal that are bigger (in

absolute value) than the corresponding entries on the diagonal of each column. In

practice, this aspect of the algorithm can be tuned (to improve the accuracy in giving

the warning) to account for entries that are lower but very close to the ones on the

diagonal.8 To show that this idea is actually grounded we perform a small Monte

8In this particular application we tune the algorithm to give a warning when the largest off-
diagonal entry of the matrix estimated via MaxDiag is > 0.90. We do this to optimize the true
positives versus false positives trade-off.

48



Carlo study where we generate data from 100 VAR processes with a mixing matrix

of the type c) and 100 of the type f) and check when the warning is given correctly.9

We observe only 1% of c) instances wrongly labeled as f) instances (false positives)

and 65% of f) instances correctly labeled as f) instances (true positives).

This can be considered a somewhat good result, however, by performing a quick

error analysis, we observe that in fact the mislabeling occurs when the algorithm

does not correctly classify the structure as non-recursive, rather than when it is

unable to distinguish case c) from case f). This is coherent with the result of the

first part of this section, where we showed that in case f) the non-recursiveness of

the mixing matrix is correctly identified roughly 68% of the times (see Tab.A.18).

Indeed, if we look at only those instances where the structure has been correctly

labeled as non-recursive, the result is way more encouraging: we have that 90% of

the f) instances are correctly labeled as f) instances.

We implement these ideas in the following refined algorithm:

REFINED ALGORITHM

1. Test Gaussianity:

� if more than one vector of residuals is Gaussian, WARN and STOP.

� if at most one vector of residuals is Gaussian proceed,

2. Test recursiveness:

� if the estimated structure is non-recursive, use MaxDiag and STOP.

Test whether likely to be in case f) rather than in case c) and WARN

if case f) is identified.

9We here use three variables and three lags. We generalize this result at the end of the section
(see Tab.B.21).
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� if the estimated structure is recursive proceed,

3. Compare methods’ estimates:

� if can infer that case a) is likely use Cholesky and STOP.

� else use Cholesky + order and STOP.

We report the performance of the benchmark and refined algorithms in Tab.B.19

and Tab.B.20.

The first thing that we notice is that the number of lags does not influence

substantially the performance of the two algorithms. This in general (but not always)

worsens just slightly when the number of lags is increased. Secondly, we have that

the refined algorithm outperforms the benchmark algorithm if the mixing matrix is

of type a) but not if it is of type b). This is due to the fact that in the former we

introduced the possibility of directly labeling the structure as a), therefore increasing

the probability of correctly labeling cases a) (true positives) but also of incorrectly

labeling cases b), d) or e) as cases a) (false positives). The false positives issue is

particularly severe when there are only two variables. However, when the number of

variables is increased, it diminishes and ultimately only concerns b) instances, with

false positives in d) and e) instances disappearing. This suggests that the refinement

which compares the estimates obtained with Cholesky and simple ICA, which allows

to directly skip to case a), should be used only if the number of variables is ≥ 5.

A possible objection to the use of this refinement is that, in real-world applica-

tions, b) instances are likely to be more common than a) instances, which can be

seen as a “lucky” case that simply depends on the ordering with which the variables

are collected and arranged prior to applying the algorithm. In other terms, out of

all the possible permutations of the variables, only one would be of the a) type while

all the others would be of the b) type. Therefore, if the ordering with which the

50



data is fed to the algorithm were simply random, it would be inconvenient to favor

the correct identification of a) instances over b) instances. This issue is particu-

larly severe when the number of variables is high. However, in most applications in

which the true mixing matrix is thought to be recursive and with a big diagonal,

the econometrician is likely to have at least an idea (driven by theoretical consider-

ations) of which might be the correct ordering of the variables. The refinement, by

increasing the probability of correctly identifying a) instances, can be seen as a way

to incorporate prior belief (in a somewhat Bayesian fashion) on the ordering of the

variables. This is obtained simply by feeding the data to the algorithm following the

order which is thought to be more plausible. Instead, the benchmark algorithm is

more convenient when the VAR identification is carried out in a fully a-theoretical

fashion. Finally, the correct signaling that we might be in the presence of a structure

of the mixing matrix of the type f) oscillates around 45 to 70% if we have at least

three variables (see Tab.B.22). Almost no false positives are given, only if the true

structure is of type c) some (albeit few) false positives are possible. We recall that,

as illustrated above, given the method we are using to identify possible f) instances,

this 30 to 55% rate of non-signaling is mostly due to the fact that the structure is

not correctly identified as non-recursive rather than to the inability of distinguishing

between cases c) and f).

Interestingly, the idea of comparing the outcome of the different identification

schemes can be used to devise a different procedure to estimate the recursive ordering

of the variables, instead of using the order estimated by VAR-LiNGAM. Indeed, as

stressed above, we have that the Γ−1
0 matrix estimated by the Cholesky and by the

MaxDiag schemes can be similar only when the true mixing matrix is of the a) kind.

To gauge when the two estimates are similar we can as usual use the “correctness”

measure. To estimate the ordering of the variables, we can therefore try all the
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permutation of the variables and choose the one for which the estimates given by the

Cholesky and the MaxDiag schemes are “the same” (that is, judged similar by the

distance measure). In theory, there should be only one such ordering, however, in

practice the “correctness” measure might output a 1 for more than one permutation.

If this is the case, we can use either the TSE or the size similarity measures to decide

which should be our final estimate (it will be the one giving the lowest tse or the

biggest size measure respectively). If these still do not lead to a unique choice, we

pick solutions that are suggested by both measures. Ultimately, if the estimate is

still not unique, we pick a permutation at random among the remaining. Of course,

it is possible (albeit unlikely) that no permutation is judged as possibly correct to

begin with. When this is the case we simply revert to the use of VAR-LiNGAM. We

can compare the performance of this method for finding the recursive ordering (in

both its versions, TSE and size), to that of VAR-LiNGAM. The results are reported

in Tab.2.

Number of variables Number of lags

Big Diagonal Small Diagonal

Lower triangular Other recursive structure Lower triangular Other recursive structure

TSE Size VAR-LiNGAM TSE Size VAR-LiNGAM TSE Size VAR-LiNGAM TSE Size VAR-LiNGAM

2

1 0.98 0.98 0.98 0.98 0.98 0.98 0.50 0.50 1.00 0.50 0.50 1.00
2 0.98 0.98 0.98 0.98 0.98 0.98 0.50 0.50 1.00 0.50 0.50 1.00
3 0.98 0.98 0.98 0.98 0.98 0.98 0.50 0.50 1.00 0.50 0.50 1.00

3
1 0.96 0.96 0.96 0.96 0.96 0.96 0.92 0.92 1.00 0.92 0.92 0.98
2 0.98 0.98 0.96 0.98 0.98 0.96 0.92 0.92 0.96 0.94 0.94 0.98
3 0.98 0.98 0.98 0.98 0.98 0.98 0.94 0.94 0.96 0.94 0.94 0.96

4
1 0.92 0.92 0.94 0.94 0.94 0.96 0.92 0.92 0.92 0.94 0.94 0.94
2 0.92 0.92 0.94 0.92 0.92 0.92 0.96 0.96 0.96 0.98 0.98 0.98
3 0.94 0.94 0.96 1.00 1.00 0.98 0.92 0.92 0.92 0.96 0.96 0.96

5

1 0.80 0.80 0.84 0.80 0.80 0.88 0.84 0.84 0.84 0.80 0.80 0.88
2 0.82 0.82 0.88 0.80 0.80 0.90 0.80 0.80 0.80 0.80 0.80 0.80
3 0.82 0.82 0.82 0.84 0.84 0.82 0.80 0.80 0.80 0.78 0.79 0.80

Table 2: Fractions of correctly estimated recursive orderings.

The first thing to notice is that this alternative way to find the recursive ordering

of the variables should be used only when we are in cases a) or b) but not when we are

in cases d) or e). This is as expected since when the diagonal is “small”, the Cholesky

and the MaxDiag schemes do not give similar estimates. The two methods, TSE and

size, always show the same performance. Finally, we have that the performance of
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the new method introduced in this section (for a) and b) instances) is comparable to

that of VAR-LiNGAM, with a slight increase in gain when the number of variables

is ≥ 4 and the number of lags is ≥ 3. Given these results, if we can find an effective

way of distinguishing cases a) or b) from d) or e), we can marginally ameliorate our

identification algorithm by using this alternative estimation of the ordering of the

variables when the structure is of type a) or b) and when the number of variables

is ≥ 4 and the number of lags is ≥ 3. One possible way of distinguishing cases a)

and b) (“big diagonal”) from d) and e) (“small diagonal”), is simply by checking if

the biggest coefficient in each column of the estimate of the mixing matrix given by

Cholesky is on the diagonal.

The performance of this last method in distinguishing the case of a big diagonal

from that of a small diagonal when the structure is recursive is reported in Tab.3.

Number of variables Number of lags
Big Diagonal Small Diagonal

Lower triangular Other recursive structure Lower triangular Other recursive structure

4
1 1.00 0.99 0.03 0.29
2 1.00 0.99 0.03 0.29
3 1.00 0.99 0.03 0.29

5
1 1.00 0.96 0.00 0.08
2 1.00 0.96 0.00 0.08
3 1.00 0.95 0.00 0.08

6

1 1.00 0.93 0.00 0.02
2 1.00 0.93 0.00 0.02
3 1.00 0.93 0.00 0.03

Table 3: Fraction of instances labeled as “big diagonal” by looking at
the diagonal of the Cholesky estimate. Average over 500 Monte Carlo
iterations.

This method is effective in labeling correctly cases a) or b), however it shows

some false positives, that is, it wrongly labels some “small diagonal” instances as

“big diagonal”. Nonetheless, this problem tends to disappear when the number of

variables grows.

Wrapping up all of these results, we can now present the final NGSI algorithm,

which runs differently depending on the number of variables: when k < 5 the bench-

mark algorithm is applied (with the addition of warning when a possible f) structure
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is detected), when k ≥ 5, the refinement to identify case a) is used and the methods

just illustrated are employed to estimate the recursive ordering of the variables (but

only when the structure is identified as either a) or b), that is, in the case of a “big

diagonal”, otherwise VAR-LiNGAM is used). Therefore, the NGSI algorithm works

as follows:

NGSI ALGORITHM

1. Test Gaussianity:

� if more than one vector of residuals is Gaussian, WARN and STOP.

� if at most one vector of residuals is Gaussian proceed,

2. Test recursiveness:

� if the estimated structure is non-recursive, use MaxDiag and STOP.

Test whether likely to be in case f) rather than in case c) and WARN

if case f) is identified.

� if the estimated structure is recursive proceed,

3. Count the number of variables:

� if there are less than five variables use Cholesky + order and STOP.

� if there are five or more variables proceed,

4. Check comparisons:

� if Cholesky similar to MaxDiag use Cholesky and STOP.

� else proceed,
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5. Run Cholesky and check diagonal:

� if big diagonal identified use Cholesky + alternative order and STOP.

� if small diagonal identified use Cholesky + VAR-LiNGAM order and

STOP.

We report the performance of the NGSI algorithm in Tab.B.21. As we can see,

it combines the best of the benchmark and the refined algorithm, showing marginal

improvements with respect to both. We have that the performance is outstanding

when there are up to four variables (“correctness” ranging from 86% to 100%) for all

possible structures of the mixing matrix except f). In general, the more the variables

and the worse the performance of our algorithm, as it is natural since there are more

entries to be estimated in the Γ−1
0 matrix. This can be due either to the inability

in recovering the correct ordering of the variables (when the structure is recursive)

or the inability in recovering the correct coefficients of the mixing matrix (when the

structure is not recursive). Nonetheless, the performance can be gauged satisfactory

in most situations, at least up to six variables considered and when we are not in

the presence of a structure of the f) type. Once again, we can see that the number

of lags does not have a significant influence on the performance of the algorithm, or,

to put it in different terms, it impacts the performance way less than the number of

variables.

Since f) is the only structure of the mixing matrix with which the algorithm often

fails, we look at how well NGSI signals that an f) structure is likely and we report

the results in Tab.B.22. When there are only two variables the signaling is rather

poor, however, this is not a big problem since with two variables NGSI performs

rather well (“correctness” equal to 71%) even in case f). The best signaling rate

is shown with three to four variables: 60 ∼ 70%. With more variables the correct

warning drops to 45 ∼ 65%. However, almost no mislabeling as f) (false positives)
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is shown when the true structure is not of the f) type. There is likely to be space for

improvement regarding the efficacy of this warning, which is left for future research.

As a final note, since in our implementation the NGSI algorithm relies on the

fastICA algorithm to perform the preliminary ICA decomposition, it is good practice

to run the algorithm several times and check that it always converges to the same (or

a set of similar) solutions. Indeed, as illustrated in section 3.2, since fastICA relies on

a random initialization, when the algorithm is run various times it is possible for the

resulting mixing matrices to differ, thereby leaving the identification undetermined.

Appendix C. provides six examples (one for each structure of the mixing matrix)

of VAR identification via NGSI. The algorithm has been implemented in R.

3.4.1 The case of Gaussian residuals

The main shortcoming of the NGSI algorithm is that it does not generalize to the

case of Gaussian reduced-form residuals. This is because, as underlined numerous

times, independent component analysis fails if more than one vector of residuals is

Gaussian, therefore leading to wrong estimation of the mixing matrix in cases c) and

f), and general inability to distinguish between recursive and non-recursive structure

as well as inability to find the true recursive ordering of the variables via VAR-

LiNGAM. We show this by modifying our algorithm so that it does not stop when

the residuals are Gaussian and by evaluating its performance under Gaussianity.

The results are reported in Tab.B.23, where it is shown that the algorithm performs

rather poorly when the reduced-form residuals are indeed Gaussian.

However, an interesting question is “how actually likely is it, in real-world appli-

cations, for more than one vector of reduced-form residuals to show Gaussianity?”

To try to give a tentative answer, we run a subset of all the possible VARs obtainable

with the FRED-MD and the FRED-QD datasets and test the Gaussianity of their

reduced-form residuals. We do this by selecting 10000 combinations of variables at
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random, estimating a VAR by OLS and testing Gaussianity via the Jarque-Bera test.

In Tab.4, we report the fraction of VARs thus obtained for which for more than one

vector of residuals the null hypothesis of Gaussianity is not rejected at the 90% con-

fidence level as well as the fraction of the total possible combinations that the 10000

combinations that we check represent. We repeat the exercise for 2 to 6 variables.

Prior to performing this test, we impute the missing values in the FRED-MD and

the FRED-QD datasets via the EM algorithm, as described in section 4.2.

Number of variables

FRED-MD FRED-QD

Fraction of Gaussian VARs Fraction of total combinations Fraction of Gaussian VARs Fraction of total combinations

2 0.000 1.000 0.003 0.358
3 0.000 0.035 0.011 0.005
4 0.000 0.001 0.030 0.000
5 0.000 0.000 0.047 0.000
6 0.000 0.000 0.289 0.000

Table 4: Fraction of VARs that display more than one Gaussian vector
of residuals. Samples of 10000 VARs.

Although the results for ≥ 4 variables cannot be judged robust, we can see that

there is a clear trend. When using monthly data, we do not find any combination of

variables for which the reduced-form residuals display Gaussianity, while for quar-

terly data this fraction increases with the number of variables. Up to five variables,

there are very few possible VARs that display Gaussianity. This is a good result for

the NGSI algorithm, as it means that its main drawback is unlikely to be problematic

in practice in real-world applications.

3.5 Summary of the section

In this section, we have presented NGSI, a data-driven algorithm that performs

VAR identification, and we have shown its performance across a wide variety of

data generating processes. This algorithm is innovative in that it is able to infer the

structure of the Γ−1
0 matrix and accordingly apply the most appropriate identification

scheme, thereby not requiring the a priori assumption (such as the recursiveness of
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the contemporaneous relations or the magnitude of the relations of each variable with

itself, that is, the elements on the diagonal of the mixing matrix) that are instead

necessary when applying some of the identification schemes common in the literature.

It only relies on the assumptions of shock independence and non-Gaussianity (the

latter being testable).

To assess the performance of our algorithm, we have performed an extensive sim-

ulation study where we have artificially generated data according to a S-VAR process

where we controlled the structure of the mixing matrix. We then estimated the re-

sulting VAR by OLS and used the reduced-form residuals to obtain estimates of the

mixing matrix via NGSI. Finally, we checked the performance of the algorithm by

comparing the true and the estimated Γ−1
0 matrices via a distance measure appro-

priately defined. We have done this for a general set of data generating processes,

changing both the number of variables and the number of lags.

We have shown that our algorithm performs very well (“correctness” ranging

from 55% to 100%) across different number of variables, different numbers of lags

and different structures of the mixing matrix. The only exception is when the Γ−1
0

matrix is non-recursive structure and with a “small diagonal”, as we do not dispose

yet of an identification scheme able to correctly estimate the mixing matrix in this

case. Nonetheless, the algorithm is able to signal correctly roughly 45% to 70% of

the time, depending on the number of variables, whether we are in the presence of

such a mixing matrix.

While describing how we built the NGSI algorithm, we have presented a series of

ideas, including:

� A method to estimate whether the true mixing matrix is recursive or not, based

on the entity of the pruning performed by VAR-LiNGAM;

� An alternative to VAR-LiNGAM to estimate the recursive ordering of the vari-
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ables, based on the comparisons of the estimates given by different identifica-

tion schemes. We have shown that in the case of “big diagonal” and with

at least five variables, we are able to marginally outperform VAR-LiNGAM.

When the number of variables is less than five, the performance is instead

comparable to that of VAR-LiNGAM;

� To distinguish structures that have a “big diagonal” from structures with a

“small diagonal”, we have shown that it is effective to look at whether the

largest coefficients (in absolute value) of the estimates given by the Cholesky

or the MaxDiag algorithms (for the cases of recursiveness and non-recursiveness

respectively) are on the diagonal.

There are a series of hyperparameters of the NGSI algorithm that can be tuned

(as, for example, the pruning threshold and the threshold used to identify a big

diagonal). We here have performed only an elementary tuning of these parameters,

based on theoretical considerations and trial-and-error. A proper tuning, which is

likely to enhance significantly the performance of the algorithm, is left for future

research. We speculate that the best combination of hyperparameter values is likely

to change with the number of variables, the number of lags and the true structure

of the mixing matrix.

Several aspects of the NGSI algorithm are likely to be improvable, perhaps im-

plementing new ideas similar to those we have illustrated throughout the section.

Nonetheless, we believe that the main contribution of this work is that of intro-

ducing a new framework to approach the identification problem in VARs, more

performance-oriented rather than aprioristically theory-driven, upon which future

research can build.
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4 Application to the K+S model by Dosi et al. (2015)

This section is dedicated to an application of the validation procedure presented in

section 2 to the “K+S” model (Dosi et al. 2015), where the identification of the

causal structures is carried out by means of the NGIS algorithm (see section 3).

4.1 The model

The Schumpeter meeting Keynes (“K+S”) model by Dosi et al. (2015) is an extension

of two previous versions of evolutionary agent-based models: Dosi et al. (2010) and

Dosi et al. (2013). Its distinguishing characteristic is that it combines Schumpeterian

theories of firm-specific, endogenous innovations with typical Keynesian features of

demand-generation. Such framework aims at investigating the mutual interaction of

supply-side factors with demand-side factors and their effect in the short and in the

long run, and in particular of public policies. The model is able to reproduce a long

list of stylized facts and, from the data generated from it, it is possible to build a

cross-correlation table close to the one usually computed with the US observed data.

The model is made up of heterogeneous economic agents, divided into consumption-

good firms, capital-good firms, consumers/workers, commercial banks, a Central

Bank and the public sector. In the supply side of the economy, firms in the capital-

good industry produce heterogeneous machines using labor as their only input.

They introduce innovations or imitate competitors to augment labor productivity

or to reduce costs, by investing a fraction of their revenues in research activity.

Consumption-good firms buy capital machines and employ them together with work-

ers to produce a homogeneous good. They plan their production and inventories on

the basis of the expected demand, which is formed in a backward-looking manner,

and invest in new machines when their capital stock is insufficient or obsolete. Sup-

pliers advertise their machines’ prices and productivity to a restricted number of
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firms, so that the capital goods market is characterized by imperfect information.

Consumption-good firms can invest using internal or external resources. However,

capital markets are modeled as being imperfect. Indeed, banks are unable to allocate

credit optimally due to imperfect access to information about the creditworthiness

of the applicants. This implies that the financial structure of firms matters (external

funds are more expensive than internal ones) and firms may be credit rationed. The

maximum amount of credit that a firm can receive is given by a loan-to-value ratio,

while the cost of credit depends on the interest rate set by the Central Bank and

on the creditworthiness of the firm. As a consequence, firms prefer to use internal

resources, when available, instead of banks’ loans. Commercial banks are heteroge-

neous in the number of clients and in other characteristics. They maintain both a

mandatory and a strategical buffer and supply credit to consumption-goods firms

according to the value of their equity and to their level of financial fragility. A bank

goes bankrupt when its net worth falls below zero. In that case, the government

intervenes and bails out the bank. Finally, consumption is given by the sum of the

wages of employed workers and the subsidies that the government provides to unem-

ployed workers. In addition to providing subsidies and saving banks, the government

spends resources for repaying debts, and it collects taxes from firms, consumers and

banks.

4.2 The data

We extract KAB = 60 time series from the “K + S” model, listed in Tab.D.24. We

run M = 100 Monte Carlo simulations of the model for which we employ the original

parametrization used in Dosi et al. (2015), which we report in Tab.E.25 The unique

difference across the 100 Monte Carlo replications is the random seed, with all the

other parameters kept constant throughout. Each simulation is run for TAB = 600
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time periods, so that we have dim(VAB = 100×60×600) and our dataset is balanced.

As a real-world counterpart against which we validate the model, we use the

FRED-QD dataset proposed by M. McCracken and Ng (2020).10 As in the origianl

paper, for our analysis we use the September 2019 vintage. This contains KRW = 248

quarterly frequency series relative to the U.S. economy dating back to 1959:Q1 and it

is benchmarked to previous work by Stock and Watson (2012).11 We favour FRED-

QD over FRED-MD (M. W. McCracken and Ng 2016) since it is more realistic to

consider the agent-based data as quarterly data rather than monthly data (con-

sider that the agent-based series are updated with every new iteration of the model,

which would be unlikely for series such as wages or prices if it were monthly series).

Furthermore, FRED-MD does not include Gross Domestic Product, Consumption,

Investment, Government spending, and other macroeconomic series that come from

the National Income and Product Accounts (NIPA). While most of the series are ac-

tually collected as quarterly series, some are higher-frequency series that have been

aggregated up to the quarterly frequency. Finally, the factors that can be extracted

from it have been shown to bear good predictive power also when used for diffu-

sion index forecasting exercises. The data is provided in levels and has not been

previously transformed in any way.

FRED-QD is not a balanced dataset as 34 series show missing values at the

beginning of the sample for a total of 1826 missing data points. The reasons why

these series have missing observations at the beginning of the sample are various,

with most of them not existing back in in 1959:Q1 and only becaming available in

1960:Q1. Since no outlier adjustment has been made to the raw data, we check for

outliers in the transformed series and remove them prior to constructing the factors,

10The dataset is freely available at http://research.stlouisfed.org/econ/mccracken/fred-
databases/.

11A description of the FRED-QD variables, together with the suggested transformations appli-
cable, is given in the Appendix of M. McCracken and Ng (2020).
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therefore treating them on a par with missing data. We define an outlier as an

observation that deviates from the sample median by more than ten interquartile

ranges. We then transform the data according to the transformations suggested in

M. W. McCracken and Ng (2016), thereby losing two observations at the beginning

of the sample.

To obtain a balanced dataset, we impute missing values using the EM algorithm

presented in Stock and Watson (2002). The data is demeaned and standardized and

all missing values are initialized to zero, the unconditional mean. A T × r matrix

of factors F = (f1, . . . , fT )′ and a N × r matrix of loadings Λ = (λ1, . . . , λN)′ are

estimated with PCA, exploiting the Λ′Λ/N = Ir normalization. The missing values

in series i at time t are then updated to Λ̂′if̂t. At this point each variable is re-

multiplied by the standard deviation and the mean is re-added, so that the values

that were missing can now be treated as observations for series i at time t. This

procedure is iterated until the estimates of the factors converge to a fixed value.

To apply the EM algorithm, we must first select the relevant number of factors

r. To this aim, we make use of the ICp2 criterion developed in Bai and Ng (2002)

which pertains to the ICp class of criteria but is shown to have better finite sample

properties. The ICp2 criterion is defined as

ICp2(r) = ln(V (r, F̂ r)) + r

(
N + T

NT

)
lnC2

NT ,

where C2
NT = min(N, T ), V (r, F̂ r) = 1

N

∑N
i=1 σ̂

2
i , σ̂

2
i = êi

′êi/T and êi is the T × 1

vector of estimated residuals deriving from the regression Xi = F rλri + ei.

Since the ICp2(r) value can only be computed on a balanced panel, it must be

calculated after the imputation step via the EM algorithm, which, however, requires

the specification of the number of factors r. Therefore, for coherence, when we

compute ICp2(r) for r = 1, . . . , rmax, for every new value of r, we impute the missing
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values using that same value in the EM step. With this procedure we find r = 7 to

be the optimal number of static factors.

After the preprocessing of the data, we dispose of a quarterly panel with no

outliers, made up of 248 series spanning the period 1959:Q1 to 2019:Q4. However,

for full comparability with Guerini and Moneta (2017), we consider up to 2014:Q2,

implying a time series length TRW = 222.

4.2.1 Analysis of the factors

For a better understanding and comparison of the properties of the agent-based

and the real-world datasets, we study the static factors that can be extracted from

each. We begin by looking at the real-world dataset. We plot the first 7 factors

(whose PCA estimate is obtained as the last iteration of the EM algorithm) in

panel (a) of Fig.F.14. These account for roughly 47% of the variation in the whole

dataset and the contribution of each individual factor is given in Fig.F.15, panel (a).

Prior to estimating the factors, we have stationarized the series according to the

transfomation suggested by M. McCracken and Ng (2020).

Following M. W. McCracken and Ng (2016), to interpret the factors we regress

each i -th series on the set of r = 7 factors for k = 1, . . . , r. This gives R2
i (k) for i =

1, . . . , 248. We then compute the incremental explanatory power of factor k for series

i as mR2
i (k) = R2

i (k)−R2
i (k− 1), for k = 2, . . . , r with mR2

i (1) = R2
i (1). We finally

calculate the average importance of each factor k as mR2(k) = 1
N

∑N
i=1mR

2
i (k). The

results are reported in Tab.F.26, together with the ten series with the highest mR2
i (k)

for factor k. We then study the explanatory power and the main characteristics of

each factor, by considering the mR2
i (k) associated with each variable.

Factor 1 accounts for 20% of the variation in the data and it can be labeled

as a real activity factor as it is mainly associated with variables related to aggre-

gate employment (USGOOD, PAYEMS, MANEMP, DMANEMP) and industrial
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production (IPMANSICS, INDPRO), which have on average an mR2
i (1) of about

0.77-0.87. Factor 2 explains around 7.6% of the data variability and it is mainly

related to term interest rates spreads, both of government bonds (T5YFFM) and

corporate bonds (AAAFFM), and inventories (BUSINVx) as well as housing per-

mits and starts (PERMIT, PERMITS, HOUST). It is therefore associated with the

forward-looking variables in the dataset. Factor 3’s explanatory power is about 6.7%,

and it is clearly related to price indices, as all of the top ten variables associated with

this factor are price indices, and it can therefore be interpreted as an inflation factor.

The interpretation of the remaining factors is less clear. Factor 4, which explains

around 4.1% of the data variability, appears to be a second employment-oriented

factor. Together with factors 5 to 7, it also shows considerable correlation with

earnings and productivity series. The last three factors jointly explain about 9% of

the data variation and correlate with employment, money and credit and household

balance sheet series respectively. These seven factors together explain 47.12% of the

data variability.

We then perform the converse exercise and for each factor we look at which

variables are associated with the highest loadings. The results for the first two

factors are shown in Fig.F.16, panel (a). As it is natural, the variables that mostly

contribute to the formation of the factors coincide with the ones whose variability

is mostly explained by the factors. Finally, Fig.F.17, panel (a), plots R2(7), the

fraction of variation in each series explained by the seven factors, for each ordered

variable. We can see that the relative importance of the common components varies

across the different series. The first seven factors explain over 0.5 of the variation in

117 series (49%) and between 0.25 and 0.5 of the variation in 69 series (29%).

We now turn to the agent-based dataset. For simplicity, all the tables and the

figures relative to this section (reported in Appendix F.) refer to a single typical
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agent-based realization. Nonetheless, they generalize (with only minor differences) to

the other Monte Carlo realizations also. Prior to computing the factors, we transform

the series according to the transformations reported in Tab.D.24, found with the

procedure outlined at the end of section 2.1.12 As in the real-world counterpart, the

ICp2 criterion finds 7 as optimal number of static factors on a Monte Carlo mode

(8.18 as a Monte Carlo average, with a standard deviation of 2.80). However, the

first seven factors explain on average 65% (with a standard deviation of 1.3%) of the

variability in the data, which is a larger proportion than in the real-world dataset.

Finally, we compute the mRi2(k)s, reported in Tab.F.27.

The interpretation of the agent-based fators is less clear than that of the real-

world factors. However, we observe some distinct patterns. Factor 1, which accounts

for 16,5% of the data variability, is clearly associated with price indices (like cpi

and d cpi) and interest rates (r, r bonds), which all show an mR2
i (1) well above

0.75. Factor 2 explains around 15.6% of the data variability and it is related to real

activity series (like GDP and Creal) and to debt (like Deb and DefonGDP). Factor

3’s explanatory power is about 11.8%, and it is related to employment (U, LD),

also through firm failures (next2, bankr LD tot), in particular in the second sector.

Factor 4, which explains around 7.2% of the data variability, is clearly related to the

banking sector, as all of the top ten variables associated with this factor relate to

bank balance sheets or to bank failures series (with the exception of DebonGDP).

Factor 5 is also associated to real activity (Ir, GDP, Creal), while the interpretation of

factors 6 and 7 (which jointly explain 7.8% of the variability in the data) is less clear.

Fig.F.16, panel (b), shows the biplot of the first two agent-based factors. Fig.F.17,

panel (b), shows the variation in each series explained by the seven factors, which

12We exclude the variables Nb act, count inflation target, Loan profit share, count def rec2,
count def2 and count compact2 as in at least one simulation they are constant for the whole ob-
servation period (or at least after having discarded the initial burn-in observations, see section
4.3).
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varies across the series. On a Monte Carlo average, they explain more that 50% of

the variance in 39 series (72%), with a standard deviation of 2.09, and between 25%

and 50% in 11 series (20%), with a standard deviation of 2.77.

In summary, we have that the main factors are present in both the real-world and

the agent-based data, although their relative importance differs (that is, they appear

in different orders). The real activity factor is the first in the real-world case and

the second (and fifth) in the agent-based case; the price indices factor is the third in

the real-world case and the first in the agent-based case; the employment factor is

the third in the real-world case and the fourth in the agent-based case. Finally, in

the agent-based data, we do not have a factor specifically related to interest rates,

unlike the second real-world factor, but it appears “mixed” with the prices factor.

These results indicate that the main forces driving the real-world economy are also

present in the model, although their relative importance might not be matched quite

correctly.

4.3 Dataset uniformity and ABM properties

As explained in the previous section, we have


dim(VRW ) = 1× 248× 222

dim(VAB) = 100× 60× 600

To fulfill the dataset uniformity requirement for the AB-data, we collect the last

TRW = 222 observations, therefore discarding the first 378 observations, getting rid

of possible transients. We consider all M = 100 Monte Carlo simulations, as we

will compare each to the unique realization of the RW-data. It is clear that we do

not have a one-to-one correspondence between the agent-based and the real-world

variables, as not all real-world variables have a precise agent-based equivalent and
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vice versa. This is because, as a semplification of reality, the “K + S” model does not

generate all the variables in FRED-QD. Furthermore, not all the variables generated

by the model have a precise real-world counterpart that is collected by statistical

agencies. However, we do have a correspondence between the main variables that

we will consider in the VAR and FAVAR validation steps: aggregate consumption,

gross private investments, unemployment rate, gross domestic product, current price

index and effective federal funds rate. As for the rest of the variables, we will consider

them when estimating the factors and we will be mainly interested in understanding

which type of series are the main macroeconomic drivers of the variability that we

observe in the datasets, an exercise for which it is not necessary to have a precise

one-to-one correspondence among agent-based and real-world variables.

Equilibrium Ergodicity

∆log(C) 92,1 96,1
∆log(I) 95,5 91,2
U 89,8 90,4
∆log(Y) 91,3 91,8
∆log(p) 94,5 90,2
r 91,8 88,7

All variables 90,3 91,2

Table 5: Percentages of non-rejection of statistical equilibrium and er-
godicity (stationarized series).

As explained in section 2.1, we check whether the ergodicity and equilibrium as-

sumptions are supported by the data. Prior to performing the Kolmogorov–Smirnov

tests, we stationarize the variables according to the transformations indicated in

Tab.D.24. The results of the tests are presented in Tab.5, which reports the per-

centage of non-rejection of each pairwise comparison, for each stationarised series of

interest. We also include a grand mean of all the 60 variables in the dataset, trans-

formed according to the t-codes in Tab.D.24. For each series we have T×(T−1)
2

= 24531

and T ×M = 22200 pairwise comparisons respectively for the statistical equilibrium
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and for the ergodicity tests. For all the series we have high values of non-rejection,

which allows us to conclude that the assumptions about the model having reached

a statistical equilibrium and producing ergodic series are reasonable.

4.4 VAR validation results

Following Guerini and Moneta (2017), we consider aggregate consumption (C), gross

private investments (I), unemployment rate (U), gross domestic product (Y), current

price index (p) and effective federal funds rate (r). These correspond to PCECC96,

GPDIC1, UNRATE, GDPC1, CPIAUCSL, FEDFUNDS and Creal, Ir, U, GDP, cpi,

r in the real-world and the agent-based datasets respectively. We harmonize the

magnitude of the time series by taking logs of the C, I, Y, p variables and expressing

U and r in percentage terms. In doing this, we exclude three Monte Carlo simulations,

m = {55, 61, 89}, from the agent-based dataset because in (at least) one period of

the model, investment goes to zero, so that it cannot be log-transformed. We plot

the variables in Fig.2.

(a) Real-world time series (b) Typical agent-based time series (first Monte Carlo realization)

Figure 2: Plot of the time series used in the VAR validation.

We estimate the integration order of the variables adapting the procedure pro-

posed by M. McCracken and Ng (2020) outlined at the end of section 2.1. That
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is, we keep differentiating the variables as long as the augmented Dickey-Fuller test

does not reject the null hypotheses of unit root and the number of differentiations

necessary to reach stationarity is our estimate for the order of integration. We have

that the test does not reject the null hypotheses of unit root in all of the real-world

time series, with the estimated integration order being 2 for p and 1 for all the other

variables. For the agent-based data, the evidence of the ubiquity of unit root is

weaker: on a Monte Carlo average, the integration orders are 0.59 for C, 0.03 for

I, 0.12 for U, 0.41 for Y, 0.10 for p and 0.00 for r. We display the results for the

real-world data and a typical agent-based realization in Tab.6. We then select the

number of lags using the Akaike Information Criterion (AIC) and the number of

cointegrating relationships following the Johansen procedure. We obtain pRW = 3

and pAB = 4 as a Monte Carlo mode (3.89 on average with a standard deviation of

1.58) and 2 and 5 cointegrating relationships respectively for the real-world and the

agent-based data (as a Monte Carlo mode). These differences do not create difficul-

ties for the estimation of the structural models as they are reduced-form properties

and they can be regarded simply as stylized facts not reproduced by the model.

We then proceed to the estimation of the reduced-form model by ordinary least

squares and check that the VAR(p) process is stable. That is, we check if its reverse

characteristic polynomial has no roots in or on the complex circle by looking at

whether the eigenvalues of the estimated companion matrix have modulus less than

one. We have that for the real-world VAR this condition is met, while 57% of the

agent-based simulations display a unit root.

Tab.7 shows the results of the Shapiro-Wilk, Shapiro-Francia and the Jarque-

Bera tests for normality on the VAR residuals, estimated from real-world data and

from a typical Monte Carlo realization of the agent-based data. We have that for

all the real-world residuals the tests reject the null hypothesis of normality. For the
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(a) Real-world data

Variable ADF p-value for levels ADF p-value for 1st-differences Critical level

C 0.99 0.01 0.05
I 0.84 0.01 0.05
U 0.05 0.01 0.05
Y 0.99 0.01 0.05
p 0.98 0.09 0.05
r 0.46 0.01 0.05

(b) Typical agent-based data (first Monte Carlo realization)

Variable ADF p-value for levels ADF p-value for 1st-differences Critical level

C 0.17 0.01 0.05
I 0.01 0.01 0.05
U 0.01 0.01 0.05
Y 0.07 0.01 0.05
p 0.01 0.01 0.05
r 0.01 0.01 0.05

Table 6: Augmented Dickey-Fuller tests.

(a) Real-world data

Variable Shapiro-Wilk p-value Shapiro-Francia p-value Jarque-Bera p-value

C 0.00 0.00 0.00
I 0.00 0.00 0.00
U 0.01 0.01 0.00
Y 0.01 0.00 0.00
p 0.00 0.00 0.00
r 0.00 0.00 0.00

(b) Typical agent-based data (first Monte Carlo realization)

Variable Shapiro-Wilk p-value Shapiro-Francia p-value Jarque-Bera p-value

C 0.01 0.01 0.03
I 0.00 0.00 0.00
U 0.05 0.07 0.16
Y 0.01 0.01 0.09
p 0.00 0.00 0.00
r 0.14 0.07 0.08

Table 7: Normality tests on the VAR residuals.
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(a) Real-world time series
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(b) Typical agent-based time series (first Monte Carlo realization)
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Figure 3: VAR residuals distribution (solid red line) and normal distri-
bution (dashed black line).

agent-based residulas, at the 0.1 level of significance we have that for at most one

residual the null cannot be rejected (funds rate or unemployment for the Shapiro-

Wilk and the Jarque-Bera tests respectively). We report the empirical distributions

of the same residuals in Fig.3. These results allow us to confidently employ the NGSI

algorithm for identification (recall that at most one vector of residuals is allowed to

show Gaussianity).

We thus perform the identification and check the convergence of NGSI by running

the algorithm 1000 times with different seeds. We have that in the agent-based

the convergence is exact while in the real-world case we obtain two Γ−1
0 matrices

(respectively in the 79.7% and the 20.3% of the runs) which, however, differ only in

one column and after the third decimal digit, so that the non-exact convergence is

not of great concern. Both with the real-world and with the agent-based data NGSI

detects a recursive structure and thus performs the “Cholesky + order” identification

scheme. We have that the estimated ordering of the real-world variables is [p → C

→ Y → I → U → r], while in the the 97 agent-based simulations considered, we

find 19 different orderings. The three most common, which account for 49% of the
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orderings found, are [C → p → Y → I → U → r], [C → p → Y → I → r → U], [p

→ C → Y → I → r → U]. We therefore have that the estimated Γ0s can be seen

as block recursive matrices, where p, C and Y are “slow moving” variables, while

U and r are “fast moving.” Even though this applies both for the real-world and

the agent-based VARs, the exact real-world ordering is found in only 7 agent-based

simulations. We then look at how often each variable is set in the same position as

in the real-world counterpart: 28% for p, 35% for C, 60% for Y, 91% for I, 40% for

U and 42% for r.

We then compute the impulse response functions as outlined in section 2.2.1

and pick H = 35 as maximum horizon. We corroborate the identification of the

structural VAR impulses by inspecting the forecast error variance decompositions

(FEVD), shown in Fig.4. The panels show the percentage of forecast-error variance

explained by the different impulses in the periods following an impulse of each type.

If the forecast error variance of each variable can be largely explained by the impulse

that is identified as that variable’s impulse, the identification is then likely to be

correct. This is indeed the case for all our impulse responses, both real-world and

agent-based, with the FEVD of consumption and prices being the most reliable in

both cases.

After having completed the identification of the real-world and the agent-based

VARs, we compute the four similarity measures as defined in section 2.5 across the

97 feasible Monte Carlo realizations of the “K+S” model. We report the mean and

standard deviation of the similarity measures in Tab.8. For sake of completeness,

we also report the similarity measures computed on the reduced-form coefficients,

which, as can be seen, do not differ substantially from the “structural” similarity

measures. The results related to the first similarity measure (sign-based, that is,

concerning the direction of the causal relationship) suggest that the Schumpeter
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(a) Real-world FEVD
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(b) Typical agent-based FEVD (first Monte Carlo realization)
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Figure 4: VAR forecast error variance decompositions.

meeting Keynes model is able to reproduce, on a Monte Carlo average, the 52% of

the causal relations underlying the real-world data. Since the standard deviation

is rather low, we can safely conclude that strong outliers are not present in either

direction. The results related to the second similarity measure (size-based, that is,

concerning the magnitude of the causal relations) show that a much higher proportion

of causal relations are reproduced: 91% on a Monte Carlo average, with an even

smaller standard deviation. Despite the fact that it might be intuitive to think that

the size-based measure should be more stringent, this is not the case. This can be

explained by the fact that the two standard deviation interval from the real-world

parameter estimate might include the agent-based parameter estimate even when

the two estimates have opposite sign. This is why, in our application, the third

similarity measure (conjunction) is mainly driven by the sign-based measure. On a

Monte Carlo average, we have that the agent-based model reproduces correctly 49%

of the joint causal relations. Our results differ from the ones of Guerini and Moneta

(2017), who find 79%, 79% and 67% for these three measures respectively and we

speculate that this is due to the different estimation and identification procedures
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employed.13 Finally, we look at our proposed additional similarity measure. We have

that the model generates, on a Monte Carlo average, impulse responses that lie for

the 61% inside the confidence bands obtained for the real-world impulse responses.

This result is shown in Fig.G.18. Overall, we consider these results as a positive

indication for the model under validation, however, to reinforce this claim, it would

be necessary to compare them with those coming from other models.

Similarity type
Reduced-form coefficients Structural coefficients

µ σ µ σ

sign-based 0.53 0.04 0.52 0.03
size-based 0.90 0.02 0.91 0.01
conjunction 0.49 0.04 0.47 0.03
irf 0.61 0.05

Table 8: VAR validation results: mean and standard deviation of the four
similarity measures across 97 Monte Carlo simulations.

4.5 FAVAR validation results

We now proceed to the second validation of the model by exploiting a FAVAR ap-

proach. When using a VAR, we have focused only on six variables, while it can be

argued that for a full validation of the model one should look at a larger set of series.

FAVARs allow to consider a larger informative set by summarizing a large part of

the information in the factors (see section 2.3).

Following Bernanke et al. (2005), we estimate two “latent” factors to include

in the model and, for full comparability with section 4.4, we directly include as

“observed” factors gross domestic product, unemployment rate, current price index

and effective federal funds rate, so that the total number of variables is again six.

As explained in section 2.3.1, we employ the two-step procedure proposed by Hae

13As argued in section 3, the NGIS algorithm is more general and leads to more precise estimates
compared to the VAR-LiNGAM algorithm used by Guerini and Moneta (2017).
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Hwang (2009) to estimate the latent factors, which we plot in Fig.5. The rest of the

validation procedure follows as in section 4.4.

(a) Real-world factors (b) Typicalagent-based factors (firstMonteCarlo realization)

Figure 5: Latent factors included in the FAVAR, estimated with the Hae
Hwang (2009) procedure.

We select the number of lags using the Akaike Information Criterion (AIC) and

the number of cointegrating relationships following the Johansen procedure. We

obtain pRW = 3 and pAB = 3 as a Monte Carlo mode (3.72 on average with a

standard deviation of 1.02) and 4 and 5 cointegrating relationships respectively for

the real-world and the agent-based data (as a Monte Carlo mode). We then proceed

to the estimation of the reduced-form model by ordinary least squares and check the

stability of the FAVAR(p) process. We have that the estimated real-world FAVAR

has all eigenvalues of the companion matrix in modulus less than one, while 48% of

the agent-based simulations display a unit root.

Tab.9 shows the results of the Shapiro-Wilk, Shapiro-Francia and the Jarque-

Bera tests for normality on the FAVAR residuals, estimated from real-world data

and from a typical Monte Carlo realization of the agent-based data. We have that

for all the real-world residuals but the first factor, the tests reject the null hypothesis

of normality, while for the agent-based residulas, at the 0.1 level of significance, we

have that Y shows normality and U and r are close to normality. We report the
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(a) Real-world data

Variable Shapiro-Wilk p-value Shapiro-Francia p-value Jarque-Bera p-value

Y 0.03 0.01 0.00
U 0.00 0.00 0.00
p 0.00 0.00 0.00
r 0.00 0.00 0.00
F1 0.90 0.51 0.41
F2 0.00 0.00 0.00

(b) Typical agent-based data (first Monte Carlo realization)

Variable Shapiro-Wilk p-value Shapiro-Francia p-value Jarque-Bera p-value

Y 0.87 0.62 0.86
U 0.08 0.09 0.08
p 0.00 0.00 0.00
r 0.10 0.06 0.03
F1 0.00 0.00 0.00
F2 0.02 0.02 0.02

Table 9: Normality tests on the FAVAR residuals.

empirical distributions of the same residuals in Fig.6. With these results in mind,

we proceed to use the NGSI algorithm for the identification of the FAVAR.

We check the convergence of NGSI by running the algorithm 1000 times with

different seeds. We have that in both the real-world and the agent-based data the

convergence is exact. In both datasets, NGSI detects a recursive structure and thus

performs the “Cholesky + order” identification scheme. We have that the estimated

ordering of the real-world variables is [p → Y → F1 → U → F2 → r] (which is

coherent with the ordering found in the real-world VAR), while in the agent-based

simulations considered, we find 11 different (but similar) orderings. The three most

common, which account for 89% of the total orderings found, are [p → Y → F2 →

F1 → r → U], [p → Y → F2 → F1 → U → r], [p → Y → F2 → F1 → U → r].

We therefore have that, as in the VAR case, the estimated Γ0s can be seen as block

recursive matrices, where p and Y are “slow moving” variables and U and r are “fast

moving.” We then look at how often each variable is set in the same position as in
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(a) Real-world timeseries
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(b) Typical agent-based time series (first Monte Carlo realization)
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Figure 6: FAVAR residuals distribution (solid red line) and normal dis-
tribution (dashed black line).

the real-world case: 96% for p, 93% for Y, 30% for F1, 0% for U, 2% for F2 and 8%

for r.

We then proceed to the computation of the impulse response functions and, as

for the VAR, we corroborate the identification of the structural FAVAR impulses

by inspecting the forecast error variance decompositions (FEVD), shown in Fig.7.

The panels show the percentage of forecast-error variance explained by the different

impulses in the periods following an impulse of each type. We have that the fore-

cast error variance of each variable can be largely explained by the impulse that is

identified as that variable’s impulse, in particular for the agent-based dataset.

After having completed the identification of the real-world and the agent-based

FAVARs, we compute the four similarity measures as defined in section 2.5 across

the Monte Carlo realizations of the “K+S” model. We report the mean and standard

deviation of the similarity measures in Tab.10. As in the VAR case, the measures

computed on the reduced-form coefficients do not differ substantially from the “struc-

tural” similarity measures. The results related to the first similarity measure (sign-

based, that is, concerning the direction of the causal relationship) suggest that the
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(a) Real-world FEVD
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(b) Typical agent-based FEVD (first Monte Carlo realization)
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Figure 7: FAVAR forecast error variance decompositions.

Schumpeter meeting Keynes model is able to reproduce, on a Monte Carlo average,

the 53% of the causal relations underlying the real-world data. The results related to

the second similarity measure (size-based, that is, concerning the magnitude of the

causal relations) show that a much higher proportion of causal relations are repro-

duced: 94% on a Monte Carlo average. The third similarity measure (conjunction)

is mainly driven by the sign-based measure and, on a Monte Carlo average, we have

that the agent-based model reproduces correctly 48% of the joint causal relations.

Finally, we look at our proposed irf similarity measure. We have that the model

generates, on a Monte Carlo average, impulse responses that lie for the 56% inside

the confidence bands obtained for the real-world impulse responses. This result is

shown in Fig.G.19. These results differ only slightly from the one obtained in section

4.4, although we here obtain values for the conjunction and the irf measures that

are somewhat lower. This is coherent with the idea that the FAVAR approach is a

“more severe test” than the simple VAR approach.
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Similarity type
Reduced-form coefficients Structural coefficients

µ σ µ σ

sign-based 0.53 0.05 0.53 0.03
size-based 0.93 0.01 0.94 0.01
conjunction 0.48 0.05 0.48 0.03
irf 0.56 0.07

Table 10: FAVAR validation results: mean and standard deviation of the
four similarity measures across 97 Monte Carlo simulations.

4.6 DFM validation results

As a final validation tool, we implement a dynamic factor model. To begin with, we

select the optimal number of dynamic factors q following the procedure suggested by

Amengual and Watson (2007), which applies the the ICp2 criterion by Bai and Ng

(2002) on the residuals of a VAR model fitted on the estimated factors (see Eq.2.4.2).

In the real-world data we find qRW = 6 while in the agent-based data we have

qAB = 5 on a Monte Carlo mode (5.16 as a Monte Carlo mean with a standard

deviation of 2.8). Nonetheless, we estimate the DFM with six dynamic factors in

the agent-based case also so as to have the same number of variables (and hence

of impulse responses) as in sections 4.4 and 4.5. We then select only the impulse

responses of the shocks in the dynamic factors on the six variables of interest (C,

I, U, Y, p, r), listed in section 4.4. Finally, we compute the similarity measures,

reported in Tab.11.

The results related to the sign-based similarity measure suggest that the model

is able to reproduce, on a Monte Carlo average, the 44% of the causal relation un-

derlying the real-world data. The results related to the size-based similarity measure

show that a much higher proportion of causal relations are reproduced: 79% on a

Monte Carlo average. The third similarity measure (conjunction) is again mainly

driven by the sign-based measure and, on a Monte Carlo average, we have that the
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model reproduces correctly 48% of the joint causal relations. Finally, we have that

the model generates, on a Monte Carlo average, impulse responses that lie for the

78% inside the confidence bands obtained for the real-world impulse responses. This

result is shown in Fig.G.20. Once again, these results are similar to the ones obtained

in sections 4.4 and 4.5, with the first three similarity measures being slightly lower

but the irf measure being considerably higher. With the exception of the latter, the

overall results are therefore coherent with the idea that the DFM approach can be

an “even more severe test” than the FAVAR approach.

However, in the case of a DFM, the irf similarity measure is perhaps not the

best tool to assess the validation of the model, as it is likely to be influenced by the

sign indeterminacy of the DFM impulse responses, which can lead to particularly

wide confidence bands (especially in comparison to those obtained with the VAR

and FAVAR approaches), as pointed out in section 2.4.

Similarity type
Reduced-form coefficients Structural coefficients

µ σ µ σ

sign-based 0.45 0.01 0.44 0.04
size-based 0.79 0.05 0.79 0.01
conjunction 0.41 0.03 0.40 0.03
irf 0.78 0.10

Table 11: DFM validation results: mean and standard deviation of the
four similarity measures across 97 Monte Carlo simulations.
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5 Conclusions

Recent developments in the VAR literature have demonstrated that it is possible to

identify structural shocks by using only the distribution of reduced-form shocks and

taking advantage of the information provided by its higher-order moments, making

shock identification possible by relying solely on the assumptions of independence

and non-Gaussianity of the structural shocks. However, the identification schemes

proposed so far, which are rooted in independent component analysis, rely on ad-

ditional assumption to solve the indeterminacy of the permutation and scaling of

the columns of the mixing matrix. This work has proposed a strategy to solve

these indeterminacies without relying on such auxiliary assumptions. After having

reviewed some popular identification schemes and defined a way to ascertain when

the estimate of the mixing matrix can be gauged correct, we have evaluated the

performance of each of these schemes via an extensive simulation study. In doing

so, we have identified which aspects of the structure of the mixing matrix (which

convey specific assumptions) are relevant in determining the failure or success of the

identification algorithms and we have studied the precision of each algorithm in dif-

ferent settings. This has served as a basis to develop NGSI (short for Non Gaussian

Shock Identification), an innovative data-driven identification algorithm capable of

inferring from the data which assumptions are likely to hold and accordingly apply-

ing the most appropriate (and precise) identification scheme, thereby only relying on

the assumptions of shock independence and non-Gaussianity (the latter conveniently

being testable).

To assess the performance of NGSI, we have performed a second simulation study,

where we explored an exhaustive set of data generating processes by testing the

algorithm in a wide variety of settings. We have shown that its performance is

dependent on the structure of the mixing matrix, on the number of variables and, to
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a marginal extent, also on the number of lags, with a “correctness” measure ranging

from 55% to 100%. The only setting in which the algorithm is likely to fail is when the

mixing matrix is such that its structure is non-recursive and for at least one variable

there is a contemporaneous relation (with another variable) that is stronger than the

contemporaneous relation with itself, as we do not dispose yet of an identification

scheme able to correctly estimate the mixing matrix in this case. This is a key aspect

on which we plan to develop our future investigations. Nonetheless, NGSI is able to

signal correctly most of the time whether we are in the presence of such a mixing

matrix and it outputs a warning when this is the case.

While describing how we built the NGSI algorithm, we have presented a series of

techniques that can be put in practice to gain insight on the structure of the mixing

matrix. We believe that similar ideas can be implemented to further enhance the

performance of the algorithm or to devise new identification strategies. Furthermore,

there are a series of hyperparameters of the NGSI algorithm that can be tuned. In

the present work, we have performed only an elementary tuning of these parameters,

based on theoretical considerations and trial-and-error. A proper extensive tuning,

which is likely to further enhance the performance of the algorithm, is left for future

research. We speculate that the best combination of hyperparameter values is likely

to depend on the structure of the mixing matrix, the number of variables, and the

number of lags. Moreover, we have shown that in real-world applications it is unlikely

for the structural shocks to show Gaussianity, implying that the pivotal assumption

upon which NGSI relies is likely to hold.

Several aspects of the algorithm are likely to be improvable, perhaps implement-

ing new ideas similar to the ones we have presented. This being said, we are convinced

that NGSI represents a significant step forward in the solution of the identification

problem due to its general applicability and its outstanding performance (at least
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in comparison to other identification schemes). Nonetheless, we believe the main

contribution of this work to be the introduction of a new framework to approach the

identification problem in VARs, more performance-oriented rather than aprioristi-

cally theory-driven, upon which future research can build.

Furthermore, in this work we have presented a new method to empirically validate

simulation models that generate artificial time series data comparable with real-world

data. The approach, which is based on the comparison of the causal structures

estimated from the artificial and the real-world data, has extended the validation

procedure proposed by Guerini and Moneta (2017) to the use of structural factor

models, which, compared to standard SVARs, allow to consider a larger informative

set, thereby leading to a more comprehensive validation assessment. Compared to

the mere ex-post ability to reproduce a number of stylized facts, often used as main

validation routine, the comparison of the causal relations constitutes a significant

improvement in the assessment of a model, since a good matching between the

causal structures incorporated in the model and the causal structures underlying

the real-world data can provide better support to the policy statements drawn from

the macroeconomic model under validation. Furthermore, this methodology is able

to address both the problem of evaluating theoretical simulation models against

the data and the problem of comparing different models in terms of their empirical

reliability.

A critical aspect when implementing a VAR regards the choice of the variables

to include and whether these can be considered a sufficient information set to re-

cover the relevant causal structures. Indeed, a well-known problem in the traditional

specification of VAR models is that only a small amount of variables can be directly

included, as the number of parameters that need to be estimated rapidly increases

with the number of variables. As a consequence, the choice of what variables to
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consider is somewhat subjective and it constraints the researcher to exploit a thin

informative set. By resorting to a factor-based approach, the problem of choosing

which variables to consider is overshadowed since a big part of the information is

included via the factors. In addition, the factor approach sometimes allows to get

a more precise measure of given quantities which have a clear theoretical definition

but cannot be distinctly observed in reality and, since the common components can

be interpreted as a cleaner version of the variables that should be considered for

structural analysis, hence free of measurement error, it allows for the recovery of

structural shocks that are not contaminated by non-corresponding shocks (contam-

ination which is instead possible in the case of simple VARs).

The present work has focused mainly on the validation of agent-based models,

for which we have presented a first application to the model proposed by Dosi et al.

(2015). Nevertheless, our methodology can be easily generalized to any simulation

model able to generate enough time series to justify the use of a factor-based ap-

proach. As a real-world dataset against which to validate the model, we have used

FRED-QD (M. McCracken and Ng 2020). Prior to the validation step, we have per-

formed an in-depth analysis of the factors that can be extracted from each dataset,

and we have shown that the main forces driving the real-world economy are also

present in the model, although their relative importance is not entirely matched.

We then implemented our proposed validation procedure, based on the comparison

of the causal structures underlying the real-world data and the causal structures

incorporated in the model. We repeated the validation exercise three times, imple-

menting three different structural models. We first performed a benchmark validation

by means of a standard VAR model, replicating the exercise carried out by Guerini

and Moneta (2017), with minor differences. This suggests that the model is able

to resemble between 47% and 61% of the causal relations entailed by a SVAR esti-
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mated on real-world data. We then extended the framework to factor models by first

implementing a Factor Augmented VAR and then a Dynamic Factor Model, which

constitute “more severe” validation procedures. We have calculated that, according

to the proposed similarity measures, the model is able to reproduce between 48%

and 56% of the causal relations entailed by a SFAVAR estimated on real-world data

and between 40% and 78% of the causal relations entailed by a DFM estimated on

real-world data. We believe this to be a somewhat positive result for the Schumpeter

meeting Keynes model but, in order to reinforce this claim, it would be necessary to

compare this result with the ones obtained by validating other competing models.

Rather than trying to settle the validation issue in an ultimate manner, this work

has aimed at setting a new benchmark upon which future research might build.

We believe that the use of a plurality of methods, capable of bringing together

complementary evidence, can provide the necessary support to the policy statements

drawn from macroeconomic simulation models, such as agent-based models.
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Appendix A. Assessmentof the identificationschemes

TSE Cholesky Cholesky + order MaxDiag MaxDiag + order VAR LiNGAM

Big diagonal Lower triangular 0.004 0.366 0.005 0.368 0.391
Other recursive structure 5.501 0.361 5.620 0.362 0.387
Not recursive 0.909 5.650 0.006 5.545 5.750

Small diagonal Lower triangular 0.098 0.800 283275.300 283278.907 751.727
Other recursive structure 1554.306 4.047 1333113.981 1330147.937 752.962
Not recursive 9046.664 9349.754 28946.836 28807.151 9382.769

Table A.12: Total squared error. Monte Carlo average over 500 simula-
tions.

SIGN Cholesky Cholesky + order MaxDiag MaxDiag + order VAR LiNGAM

Big diagonal Lower triangular 0.992 0.956 0.658 0.635 0.946
Other recursive structure 0.461 0.957 0.358 0.637 0.947
Not recursive 0.574 0.425 0.984 0.648 0.431

Small diagonal Lower triangular 0.995 0.987 0.573 0.569 0.961
Other recursive structure 0.455 0.986 0.375 0.564 0.959
Not recursive 0.554 0.406 0.734 0.569 0.398

Table A.13: Percentage of correct sign. Monte Carlo average over 500
simulations.

SIZE Cholesky Cholesky + order MaxDiag MaxDiag + order VAR LiNGAM

Big diagonal Lower triangular 1.000 0.953 1.000 0.953 0.927
Other recursive structure 0.331 0.954 0.339 0.954 0.928
Not recursive 0.544 0.270 1.000 0.390 0.298

Small diagonal Lower triangular 1.000 0.989 0.732 0.722 0.898
Other recursive structure 0.382 0.986 0.324 0.720 0.897
Not recursive 0.550 0.369 0.606 0.400 0.378

Table A.14: Percentage of close-to-correct size. Monte Carlo average
over 500 simulations.
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CONTEMPORANEOUS RELATIONS Cholesky Cholesky + order MaxDiag MaxDiag + order VAR LiNGAM

Big diagonal Lower triangular 1.000 0.947 1.000 0.947 0.947
Other recursive structure 0.205 0.947 0.205 0.947 0.947
Not recursive 1.000 0.323 1.000 0.323 0.323

Small diagonal Lower triangular 1.000 0.987 1.000 0.987 0.987
Other recursive structure 0.211 0.984 0.211 0.984 0.984
Not recursive 1.000 0.321 1.000 0.321 0.321

Table A.15: Percentage of correct contemporaneous relations. Monte
Carlo average over 500 simulations.

OVERALL SIMILARITY Cholesky Cholesky + order MaxDiag MaxDiag + order VAR LiNGAM

Big diagonal Lower triangular 1.000 0.920 1.000 0.920 0.920
Other recursive structure 0.000 0.920 0.006 0.920 0.920
Not recursive 0.038 0.022 1.000 0.220 0.016

Small diagonal Lower triangular 1.000 0.980 0.196 0.186 0.980
Other recursive structure 0.000 0.976 0.000 0.188 0.976
Not recursive 0.006 0.002 0.188 0.074 0.002

Table A.16: Overall similarity. Monte Carlo average over 500 simula-
tions.

OVERALL SIMILARITY Cholesky Cholesky + order MaxDiag MaxDiag + order VAR LiNGAM

Big diagonal Lower triangular TRUE TRUE TRUE TRUE TRUE
Other recursive structure FALSE TRUE FALSE TRUE TRUE
Not recursive FALSE FALSE TRUE FALSE FALSE

Small diagonal Lower triangular TRUE TRUE FALSE FALSE TRUE
Other recursive structure FALSE TRUE FALSE FALSE TRUE
Not recursive FALSE FALSE FALSE FALSE FALSE

Table A.17: Overall similarity, a large margin classifier.

VAR-LiNGAM Correct order Detected recursiveness

Big diagonal Lower triangular 0.920 0.988
Other recursive structure 0.920 0.988
Not recursive 0.176 0.054

Small diagonal Lower triangular 0.980 1.000
Other recursive structure 0.976 1.000
Not recursive 0.162 0.320

Table A.18: Order of the variables and recursiveness of the mixing matrix
as estimated by VAR-LiNGAM. Monte Carlo average over 500 simula-
tions.
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Appendix B. Performance of the NGSI and related

algorithms

Number of variables Number of lags

Big Diagonal Small Diagonal

Lower triangular Other recursive structure Not recursive Lower triangular Other recursive structure Not recursive

2

1 0.98 0.91 0.86 1.00 0.97 0.71
2 0.98 0.89 0.86 1.00 0.97 0.71
3 0.98 0.90 0.87 0.99 0.97 0.71

3

1 0.94 0.93 0.95 0.99 0.98 0.18
2 0.95 0.94 0.96 0.96 0.97 0.20
3 0.96 0.94 0.96 0.94 0.96 0.19

4

1 0.93 0.94 0.90 0.87 0.87 0.01
2 0.92 0.90 0.89 0.88 0.90 0.02
3 0.93 0.95 0.88 0.88 0.87 0.02

5

1 0.84 0.86 0.82 0.78 0.71 0.00
2 0.91 0.89 0.81 0.77 0.73 0.00
3 0.85 0.85 0.82 0.80 0.71 0.00

6

1 0.81 0.74 0.55 0.74 0.61 0.00
2 0.80 0.74 0.54 0.71 0.58 0.00
3 0.85 0.77 0.57 0.69 0.57 0.00

Table B.19: Performance of the benchmark algorithm, as measured by
the “correctness” distance measure. Monte Carlo average over 500 sim-
ulations.

Number of variables Number of lags

Big Diagonal Small Diagonal

Lower triangular Other recursive structure Not recursive Lower triangular Other recursive structure Not recursive

2

1 1.00 0.44 0.94 1.00 0.19 0.77
2 1.00 0.45 0.93 1.00 0.17 0.77
3 1.00 0.47 0.94 1.00 0.19 0.77

3

1 1.00 0.67 0.95 0.99 0.96 0.18
2 1.00 0.70 0.96 0.96 0.95 0.20
3 1.00 0.71 0.96 0.95 0.93 0.19

4

1 1.00 0.87 0.90 0.87 0.87 0.01
2 1.00 0.84 0.89 0.88 0.90 0.02
3 1.00 0.87 0.88 0.88 0.87 0.02

5

1 1.00 0.86 0.82 0.78 0.71 0.00
2 1.00 0.88 0.81 0.77 0.73 0.00
3 1.00 0.84 0.82 0.80 0.71 0.00

6

1 1.00 0.74 0.55 0.74 0.61 0.00
2 1.00 0.74 0.55 0.71 0.58 0.00
3 1.00 0.77 0.57 0.69 0.57 0.00

Table B.20: Performance of the refined algorithm, as measured by the
“correctness” distance measure. Monte Carlo average over 500 simula-
tions.
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Number of variables Number of lags

Big Diagonal Small Diagonal

Lower triangular Other recursive structure Not recursive Lower triangular Other recursive structure Not recursive

2

1 0.98 0.91 0.86 1.00 0.97 0.71
2 0.98 0.89 0.86 1.00 0.97 0.71
3 0.98 0.90 0.87 0.99 0.97 0.71

3

1 0.94 0.93 0.95 0.99 0.98 0.18
2 0.95 0.94 0.96 0.96 0.97 0.20
3 0.96 0.94 0.96 0.94 0.96 0.19

4

1 0.93 0.94 0.90 0.87 0.87 0.01
2 0.92 0.90 0.89 0.88 0.90 0.02
3 0.93 0.95 0.88 0.88 0.87 0.02

5

1 1.00 0.86 0.82 0.78 0.71 0.00
2 1.00 0.88 0.81 0.77 0.73 0.00
3 1.00 0.84 0.82 0.80 0.71 0.00

6

1 1.00 0.74 0.55 0.74 0.61 0.00
2 1.00 0.74 0.55 0.71 0.58 0.00
3 1.00 0.77 0.57 0.69 0.57 0.00

Table B.21: Performance of the NGSI algorithm, as measured by the
“correctness” distance measure. Monte Carlo average over 500 simula-
tions.

Number of variables Number of lags

Big Diagonal Small Diagonal

Lower triangular Other recursive structure Not recursive Lower triangular Other recursive structure Not recursive

2
1 0.00 0.00 0.00 0.00 0.00 0.29
2 0.00 0.00 0.00 0.00 0.00 0.29
3 0.00 0.00 0.00 0.00 0.00 0.30

3
1 0.00 0.00 0.02 0.00 0.00 0.62
2 0.00 0.00 0.02 0.00 0.00 0.64
3 0.00 0.00 0.01 0.00 0.00 0.65

4
1 0.00 0.00 0.05 0.00 0.00 0.67
2 0.00 0.00 0.06 0.00 0.00 0.67
3 0.00 0.00 0.06 0.00 0.00 0.64

5

1 0.00 0.00 0.02 0.00 0.00 0.61
2 0.00 0.00 0.02 0.00 0.00 0.60
3 0.00 0.00 0.03 0.00 0.00 0.56

6

1 0.00 0.00 0.08 0.00 0.00 0.49
2 0.00 0.00 0.05 0.00 0.00 0.45
3 0.00 0.00 0.05 0.00 0.00 0.44

Table B.22: Performance of the refined and NGSI algorithms, percentage
of detections of structure f). Monte Carlo average over 500 simulations.

Number of variables Number of lags

Big Diagonal Small Diagonal

Lower triangular Other recursive structure Not recursive Lower triangular Other recursive structure Not recursive

2
1 0.53 0.18 0.66 0.66 0.52 0.68
2 0.57 0.22 0.67 0.70 0.53 0.70
3 0.48 0.23 0.71 0.69 0.56 0.72

3

1 0.02 0.01 0.26 0.29 0.32 0.14
2 0.01 0.00 0.22 0.40 0.39 0.15
3 0.02 0.01 0.23 0.34 0.34 0.20

4

1 0.00 0.00 0.01 0.23 0.24 0.02
2 0.00 0.00 0.01 0.21 0.21 0.00
3 0.00 0.00 0.03 0.20 0.23 0.01

5

1 0.00 0.00 0.00 0.16 0.17 0.00
2 0.00 0.00 0.01 0.15 0.16 0.00
3 0.00 0.00 0.00 0.15 0.17 0.00

6

1 0.00 0.00 0.00 0.05 0.05 0.00
2 0.00 0.00 0.00 0.04 0.07 0.00
3 0.00 0.00 0.00 0.04 0.06 0.00

Table B.23: Performance of the NGSI algorithm, Gaussian residuals.
Monte Carlo average over 500 simulations.
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Appendix C. NGSI algorithm: an R implementation

Figure C.8: R implementation of the NGSI algorithm: lower triangular
mixing matrix with “big diagonal.”

Figure C.9: R implementation of the NGSI algorithm: recursive mixing
matrix with “big diagonal.”
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Figure C.10: R implementation of the NGSI algorithm: non-recursive
mixing matrix with “big diagonal.”

Figure C.11: R implementation of the NGSI algorithm: lower triangular
mixing matrix with “small diagonal.”
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Figure C.12: R implementation of the NGSI algorithm: recursive mixing
matrix with “small diagonal.”

Figure C.13: R implementation of the NGSI algorithm: non-recursive
mixing matrix with “small diagonal.”
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Appendix D. “K+S” model time series

The column tcode denotes the following data transformation for a series x: (1) no transformation;

(2) ∆xt; (3) ∆2xt; (4) log(xt); (5) ∆log(xt); (6) ∆2log(xt); (7) ∆(xt/xt−1 − 1).

tcode variable name descriptiona

1 5 GDP Real gross domestic product
2 5 Creal Real aggregate consumption
3 5 Ir Real aggregate investments
4 2 dNtot Changes in inventories
5 5 EItot Total expansionary investments, both sectors
6 5 SItot Total substitution investments
7 1 LD Percentage of labour demand
8 1 U Unemployment rate
9 5 w Total wages
10 1 diff w Total wages (first differences)
11 5 cpi Consumer price index
12 1 diff cpi Consumer price index (first differences)
13 5 Am Average productivity over two periods
14 5 rw Real wages
15 2 Mutot Global mark-up
16 5 G Public expenditures
17 5 Tax Total tax revenues
18 2 Def Public deficit
19 5 Deb Public debt
20 1 DefonGDP Public deficit to GDP ratio
21 2 DebonGDP Public debt to GDP ratio
22 1 H1 Herfindal index, sector 1
23 1 H2 Herfindal index, sector 2
24 1 DF1 Variability of market shares index, sector 1
25 1 DF2 Variability of market shares index, sector 2
26 1 next1 Number of exits, sector 1
27 1 next2 Number of exits, sector 2
28 1 next2bc Number of exits due to bankrupcy, sector 2
29 4 Debt all Private sector debt
30 5 BankEquity all Total bank equity
31 4 BankProfits all Bank profits
32 4 BadDebt all Non performing loans
33 5 CreditSupply all Total credit supply
34 4 CreditDemand all Total credit demand
35 1 HB Herfindal index, banking sector
36 1 countbf all2 Number of banking failures per time period
37 5 BankCash all Bank reserves
38 2 Nb act Total number of banking failures
39 1 mean rdeb all Average interest rate on loans
40 4 Gbailout all Fiscal costs of bailouts
41 1 d cpi Inflation rate
42 1 r Base interest rate
43 1 count zerobound 1 if zero bound constraint
44 1 count savings 1 if private savings < deficit
45 1 count bonds 1 if demand for bonds does not cover deficit
46 1 count inflation target 1 if inflation 6= inflation target
47 1 count unemp target 1 if U(1) ≤ target unemployment
48 1 Loan profit share Share of loan interest over total interest revenues
49 1 r bonds Interest rate on bonds
50 2 share FC prod Share of constrained firm production
51 2 share FC inv Share of constrained firm investment
52 2 FC Prod tot Ratio of production constraint
53 2 FC Inv tot Ratio of investment constraint
54 1 bankr LDtot Share of employment of exiting firms
55 1 count def rec2 1 if fiscal rule is not binding due to recession
56 1 count def2 1 if fiscal rule is binding
57 1 mean rbank all Average prime rate of banks
58 1 std rdeb all Standard loan rate
59 1 count compact2 1 if fiscal compact is binding
60 5 GDPm Nominal GDP

Table D.24: Variables obtained as realization of the “K+S” model.

aFor further details refer to the original paper: Dosi et al. (2015).
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Appendix E. Parametrization of the “K+S” model

Description Symbol Value

Monte Carlo replications M 100
Time sample T 600
Number of firms in capital-good industry F1 50
Number of firms in consumption-good industry F2 200
Number of banks B 10
Capital-good firms’ mark-up µ1 0,04
Consumption-good firm initial mark-up µ̄0 0,25
Uniform distribution supports [ϕ1, ϕ2] [0,10, 0,90]
Wage setting ∆ĀB weight ψ1 1
Wage setting ∆cpi weight ψ2 0,05
Wage setting ∆U weight ψ3 0,05
Bank deposits interest rate rd 0
Bond interest rate mark-up µbonds -0,33
Loan interest rate mark-up µdebt 0,3
Bank capital adequacy rate τ b 0,08
Shape parameter of bank client distribution paretoα 0,08
Scaling parameter for interest rate cost kconst 0,1
Capital buffer adjustment parameter β 1
RD investment propensity ν 0,04
RD allocation to innovative search ξ 0,5
Firm search capabilities parameters ζ1,2 0,3
Beta distribution parameters (innovation) (α1, β1) (3, 3)
Beta distribution support (innovation) [χ1, χ̄1] [-0,15, 0,15]
New customer sample parameter ω̄ 0,5
Desired inventories l 0,1
“Physical” scrapping age η 20
Payback period b 3
Competitiveness weights ω1,2 1
Coefficient in the consumption-good firm mark-up rule υ 0,04
Tax rate tr 0,1
Unemployment subsidy rate ϕ 0,6
Baseline interest rate r 0,025

Table E.25: Parametrization of the model under validation. The unique
difference across the 100 Monte Carlo replications is the random seed.
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Appendix F. Factor analysis: tables and figures
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Table F.26: Factors estimated from the real-world data: list of the 10
series that load most heavily on all each factor along with the R2 obtained
from a regression of the series on the factor.
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Table F.27: Typical factors estimated from the agent-based data (first
Monte Carlo realization): list of the 10 series that load most heavily on
all each factor along with the R2 obtained from a regression of the series
on the factor.
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(a) Real-world factors (b) Typical agent-based factors (first Monte Carlo realization)

Figure F.14: Plot of the first 7 factors extracted from the datasets.

(a) Real-world factors (b) Typical agent-based factors (first Monte Carlo realization)

Figure F.15: Portion of data variability accounted by each factor. The
dashed red line indicates the seventh factor.
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(a) Real-world factors (b) Typical agent-based factors (first Monte Carlo realization)

Figure F.16: Biplot of the first two factors. For each factor the ten
variables with the highest ladings are shown.

(a) Real-world time series (b) Typicalagent-basedtimeseries (firstMonteCarlo realization)

Figure F.17: Explanatory power of the first seven factors in the time
series, expressed as the R2 of the regression of each variable on the seven
factors.
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Appendix G. Impulse Response Functions
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