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Abstract

This paper evaluates the dynamic impact of weather shocks on economic ac-
tivity in the three main European countries—Germany, France, and Italy. To
capture meaningful variations in weather patterns, we propose a novel monthly
Composite Weather Index (CWI). This index incorporates relevant informa-
tion of five weather-specific shocks: heat, cold, drought, precipitation, and
winds. We estimate a series of country-specific Bayesian Structural Vector
Autoregressive models to assess the effects of weather shocks on distinct pro-
duction sectors, including energy, construction, manufacturing, and services,
as well as sectoral prices. The findings reveal evidence of both direct and in-
direct significant impacts of weather shocks on economic activity in Europe,
with each component of the CWI exerting heterogeneous effects across differ-
ent countries and production sectors.

Keywords : Weather shocks, European production, Bayesian SVAR.
JEL classification: C32, E23, Q54.

1London Business School. Email: dcolombo@london.edu
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1 Introduction

The complex relationship between economic activity and climate events has
been widely acknowledged, with a consensus among experts that economic activity
contributes to long-term negative effects on climate. However, empirical evidence
demonstrating reverse causality—from climate shocks to aggregate economic activ-
ity—has been relatively limited. In recent years, there has been a notable increase
in research efforts aimed at identifying the impact of climate on the business cycle.
Noteworthy examples include the studies by Kim et al. (2021) for the U.S. and Billio
et al. (2020) for European countries. In this literature, the term “climate” conven-
tionally refers to the joint probability distribution of outcomes describing the state
of the atmosphere, oceans, and freshwater, including ice (Dell et al., 2012). In this
paper, we focus on large deviations from seasonal averages of the empirical realiza-
tion of climate: abnormal weather conditions and their variations over time. The
literature suggests that weather shocks generally have adverse effects on short-term
aggregate economic activity, particularly in industrial manufacturing, with signif-
icant country-specific heterogeneity. Other economic sectors, such as energy and
construction, have been less frequently studied when assessing short-term effects.
Conversely, longer-term effects in agriculture have received more attention in this
context (Gallic & Vermandel, 2020). It is important to distinguish this body of re-
search on the macroeconomic effects of weather shocks from studies focusing on the
impacts of extreme weather events typically classified as natural disasters (e.g., hur-
ricanes or floods). For example, Strobl (2011) and Felbermayr and Gröschl (2014)
examine the economic impacts of natural disasters on economic activity, while Kruttli
et al. (2023) and Ferriani et al. (2023) investigate their effects on the financial system.

Temperature time series, due to their long historical availability, are frequently
utilized in studies aiming to identify economic responses to temperature fluctua-
tions, rather than to other climate aspects. This approach is employed by Natoli
(2022) for the U.S. economy, Lucidi et al. (2022) for various European economies,
and by Burke et al. (2005) and Acevedo et al. (2020) for a broad panel of high- and
low-income countries. Some research also investigates the impacts of severe precipi-
tation events and droughts, as in Billio et al. (2020), who examine these effects for
several European economies. Additionally, there are studies examining the effects
of comprehensive weather indices, such as Kim et al. (2021), who explore potential
time-varying effects of extreme weather on the U.S. economy over the past 60 years
using the Actuaries Climate Index.1

Our objective in this paper is to evaluate the short- to medium-run effects of var-
ious types of weather shocks on output by sector in Germany, France, and Italy—the
three largest European economies. We specifically analyze the impacts on energy pro-
duction, manufacturing production, and construction, comparing the effects across
these sectors. Furthermore, we investigate contagion effects between sectors and dif-

1ACI, provided by the American Academy of Actuaries and Canadian Institute of Actuaries
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ferentiate between the direct and indirect consequences of weather shocks. To study
these effects, we also incorporate sectoral producer and consumer prices. A key inno-
vation of our study lies in the construction of the weather shocks. We utilize granular
data that we aggregate, weighting by proxies of economic activity, to construct five
distinct country-level weather indices, which can be interpreted as “shocks”: cold
and heat, drought, precipitation, and wind. We then integrate these series to ob-
tain the Composite Weather Index (CWI). This comprehensive index enables us to
contribute to the literature by examining the economic impacts of multiple weather
dimensions—not limited to temperature. Our empirical analysis is based on impulse
response functions estimated through a series of Bayesian VAR models, which allows
us to identify the impact of weather shocks. This methodology provides a coherent
framework for directly comparing the responses of different sectors and countries to
these shocks.

Our empirical analysis reveals several key findings that shed light on the macroe-
conomic effects of weather shocks on European economic activity, highlighting no-
table sectoral and geographical differences. First, weather shocks have a significant
direct impact on the construction sector. Cold weather exerts a substantial negative
effect, while wind also has negative consequences, albeit to a lesser extent. No-
tably, a latitude effect is observed with heat shocks: these have a negative impact
in Italy (a warmer country) but a positive impact in Germany (a colder country),
indicating that geographic location plays a crucial role in the sector’s response to
weather changes. Second, the energy sector is influenced through both demand and
supply channels. Temperature fluctuations affect the demand for heating, while
wind impacts the supply side by influencing the cost of electricity production. This
demonstrates that weather conditions can alter the sector’s dynamics from multiple
angles. Third, the manufacturing sector is less directly impacted by weather shocks.
However, it experiences indirect effects primarily through changes in input costs,
particularly energy prices, suggesting that weather-related disruptions in the energy
market can ripple through to manufacturing. Additionally, our findings indicate
significant heterogeneity across countries. France demonstrates greater resilience to
weather shocks, with manufacturing largely unaffected except by heat through the
energy costs channel. In contrast, Italy appears particularly vulnerable, consistent
with previous findings such as those by Olper et al. (2021). Our study is, to the
best of our knowledge, the first to explicitly examine the effects of weather shocks on
services. We find that these exhibit demand complementarities with construction,
as output and prices tend to move in tandem. However, due to data constraints, we
can only analyze output for France. Finally, our analysis does not reveal significant
non-linearities with respect to the business cycle or seasonal variations in response
to weather shocks. Additionally, cross-country spillovers from weather shocks do
not appear to be a significant issue in this study. These findings contribute to the
literature by providing a nuanced understanding of how different economic sectors
and countries respond to weather shocks, with implications for policy and risk man-
agement in the face of climatic variability.
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The rest of this paper is structured as follows. Section 2 presents a selected review
of the literature on the macroeconomic impacts of weather shocks. Section 3 intro-
duces our empirical strategy, by describing the data and the econometric methods.
Section 4 presents the main results expressed in terms of impulse response functions
to various weather shocks. Section 5 contains additional results on service produc-
tion, non-linear effects of weather shocks and cross-country spillovers. Section 6
concludes. Additional figures, robustness checks, and technical details are presented
in the Appendix.

2 Selected literature review

There is a substantial macroeconometric literature aimed at assessing the aggre-
gate macroeconomic dynamic effects of structural shocks. Seminal papers include
Romer and Romer (2004) on monetary policy shocks, V. Ramey (2011) on govern-
ment spending and fiscal shocks, and Bloom (2009) on uncertainty shocks. In recent
years, increasing attention has been given to the role of weather shocks, driven by
empirical evidence that climate hazards are becoming more frequent, more intense,
and have long-lasting consequences. These impacts have been documented as sig-
nificant in areas such as health, agriculture, tourism, employment, sales, and overall
macroeconomic activity (see, e.g., Bigano et al., 2005, Tol, 2009, Dell et al., 2012,
Wilson, 2019, Roth Tran, 2020, Vicedo-Cabrera et al., 2021, and Ballester et al.,
2023).

Several theoretical models have been proposed to analyze the impact of climate on
economic activities, such as integrated assessment models (Nordhaus, 1993; Hassler
and Krusell, 2018), which focus primarily on long-term effects. Recent reviews on
the economic effects of weather-related shocks include Hsiang (2016) and Giglio et al.
(2021). Empirically, econometric models allow for a quantitative assessment of the
effects of weather shocks on business cycles and their transmission channels (Kamber
et al., 2013; Mumtaz and Alessandri, 2021). Two main types of econometric modeling
approaches have been considered.

On the one hand, panel regressions offer the advantage of allowing for a high
geographical resolution and a larger number of observations. This approach allows
for the integration of a significant amount of regional data into the analysis. For
instance, Wilson (2019) employs a dynamic panel approach to estimate the effects
of temperature, precipitation, and snowfall on monthly employment growth in the
U.S. Starr (2000) utilizes Heating Degree Days (HDD) and Cooling Degree Days
(CDD) in a panel regression to demonstrate that U.S. monthly consumer spending
is partially influenced by temperature fluctuations. Bloesch and Gourio (2015) also
use temperatures and snowfall in a panel regression setting to study the impact of
anomalous weather deviations on various non-farm employment sectors in the U.S.
Bigano et al. (2005) adopt a panel approach to examine the relationship between
temperature and tourism in Italy, with the panel dimension corresponding to Italian
regions. Additionally, Kotz et al. (2022) employ a precipitation index in a fixed-
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effects panel regression at a yearly frequency to estimate the impacts on regional
economic growth, finding that economic growth rates decline with increases in the
number of wet days and extreme daily rainfall. Billio et al. (2020) investigate the
interplay of weather shocks with business and financial cycles, differentiating between
countries and types of weather shocks. They estimate a panel Markov-Switching
model for thirteen European countries and three types of weather shocks: high
temperatures, drought, and very heavy rainfall.

On the other hand, panel regressions are not ideal for estimating the dynamic
effects of weather shocks over time. It is crucial for economic research to deter-
mine whether the effects of such shocks are persistent or transitory. In this respect,
Structural Vector Autoregressive (SVAR) models are well-suited for efficiently esti-
mating impulse response functions (IRFs) to various types of exogenous shocks. For
instance, Ciccarelli et al. (2023) use an SVAR strategy to examine the impact of tem-
peratures on inflation in four European countries, finding that temperature increases
tend to raise inflation, with a more pronounced effect in warmer countries. Similarly,
Kim et al. (2021) employ a Smooth-Transition VAR (ST-VAR) model incorporating
standard macroeconomic variables to investigate the potential time-varying effects of
severe weather shocks on the U.S. economy over the past 60 years. They rely on the
Actuaries Climate Index (ACI), developed by the American Academy of Actuaries
and the Canadian Institute of Actuaries, which consolidates observations of temper-
atures, rainfall, drought, wind speed, and sea level. They find that an increase in
the ACI causes adverse long-lasting effects on industrial production, an increase in
the unemployment rate, and upward inflationary pressures.

Many empirical studies have studied the agricultural sector. For instance, Cis-
car et al. (2011) quantify the potential consequences of climate change on Eu-
rope’s agricultural sector. Similarly, Gallic and Vermandel (2020) examine the ef-
fects of droughts on agricultural production and macroeconomic fluctuations in New
Zealand, finding that drought shocks account for more than a third of GDP and
agricultural output fluctuations. These findings indicate a direct impact of weather
conditions on harvests, where adverse weather conditions result in reduced produc-
tion and increased prices. However, recent literature has begun to explore other
sectors of the economy that might be sensitive to such shocks, aiming to identify the
potential transmission channels of severe weather conditions to the business cycle.

Some studies emphasize the supply channels, where factors of production are
adversely affected by weather shocks. For instance, using a SVAR model, Don-
adelli et al. (2017) demonstrate that temperature shocks have a sizable, negative,
and statistically significant impact on TFP, output, and labor productivity. Several
other empirical studies, including Burke et al. (2005), Graff Zivin and Neidell (2014),
Deryugina and Hsiang (2014), and Kalkuhl and Wenz (2020), also find negative ef-
fects of temperature increases on labor productivity. Similarly, Kim et al. (2021)
document a simultaneous drop in industrial production and an increase in inflation
following a composite weather shock, suggesting that such shocks act as negative sup-
ply shocks. Moreover, other works have explored the effects on employment. Wilson
(2019) shows that, at the country level, contemporaneous local monthly employment
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growth increases with temperature, decreases with precipitation, and decreases with
snowfall. Temperature and snowfall are estimated to have only temporary impacts,
whereas precipitation is estimated to have both an immediate negative effect and a
positive cumulative effect over time. Bloesch and Gourio (2015) use temperatures
and snowfall to study the impact of anomalous deviations in weather on various
non-farm employment sectors in the U.S., finding that weather has a significant but
short-lived effect on most economic sectors studied, except for utilities, construction,
and hospitality, where the effect is more persistent. Similarly, Graff Zivin and Neidell
(2014) highlight the sustained supply-driven impacts in sectors heavily exposed to
weather conditions, such as construction. Downey et al. (2023) examine the impli-
cations of increasing precipitation volatility on construction and employment in the
U.S., finding that employment falls in response to forecasted rainfall. The suggested
mechanism is that firms adjust production when precipitation is anticipated.

Other studies have highlighted the role of demand factors in the impact of weather
shocks. For instance, Ciccarelli and Marotta (2021) examine a panel of 24 OECD
countries and estimate that climate events have a significant, albeit not substantial,
macroeconomic effect over the business cycle. They argue that physical risks act as
negative demand shocks by depressing both output and inflation. Auffhammer and
Mansur (2014) provides a comprehensive review of the empirical relationships be-
tween climate conditions and energy consumption. In specific sectors, such as retail
trade, weather shocks appear to be transmitted through shifts in consumer demand
(Roth Tran, 2022). Roth Tran (2020) investigates the role of short- and long-run
adaptation to climate in the apparel and sporting goods sectors using data from
large US firms. The study finds minimal inter-temporal substitution and indicates
that weather shocks can induce large and persistent fluctuations in retail sales, only
partially mitigated by short-term adaptation measures. Arent et al. (2015) offer a
broader review of the implications of weather changes on key economic sectors and
services. Additionally, external demand can be influenced by weather conditions.
Bigano et al. (2005) utilize raw monthly temperatures at the regional level in Italy
and find that tourism is positively correlated with temperatures, with weather ex-
pectations also playing a significant explanatory role.

Considerable heterogeneity across sectors has been documented, indicating that
weather conditions can exert divergent effects on different economic sectors. For
instance, Parnaudeau and Bertrand (2018) examine the impact of weather on sales
across various French sectors and find that a single weather shock can produce var-
ied effects on sales depending on the sector. This sectoral heterogeneity is also
apparent at the country level, particularly within Europe (Acevedo et al., 2020).
Moreover, Billio et al. (2020) investigate the effects of weather shocks on industrial
production growth and uncover evidence of uneven impacts across different phases
of the business cycle and among the countries studied. Specifically, Southern Euro-
pean economies tend to suffer from prolonged high temperatures, while Central and
Northern European countries exhibit asymmetric responses throughout the business
cycle—benefiting during recessions and experiencing negative effects during expan-
sions. Additionally, severe droughts generally have a detrimental impact on most
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Northern European countries. Consistent with our findings, France is identified as
the most resilient economy to weather shocks.

The literature on the macroeconomic impact of weather shocks is extensive. Our
work contributes significantly to this field by introducing a framework that enables
a coherent assessment of the dynamic effects of various weather shocks on output
across different economic sectors. We construct new weather indices that can be up-
dated to study multiple weather shocks over time. Our analysis reveals that different
sectors can be impacted in diverse ways: immediately due to weather conditions, or
through demand and supply channels, or indirectly via changes in costs. Addition-
ally, we provide a comparative analysis of the responses of the three largest European
economies, offering new insights into the sector-specific and cross-country variations
in the impact of weather shocks.

3 Methodology

In this section we present the methodology used in this paper. We first describe
the data that we use in the empirical analysis, then discuss our approach to econo-
metric modelling that relies on Bayesian SVAR models and Local Projections.

3.1 Data

To measure abnormal deviations in climate realizations we construct a novel index
which we call the “Composite Weather Index” (CWI), which we will argue can be
interpreted as a macroeconomic shock. We then study the propagation of these
shocks on production in three key sectors of the economy: manufacturing, energy
and construction. We complement these with producer price indices and consumer
prices to enrich our understanding of the underlying mechanisms. Finally, we also
use standard macro aggregate variables (unemployment and short-term ECB interest
rates) as controls. We use data from January 1990 to December 2019.2

3.1.1 Weather data

We construct indices for abnormal deviations in five weather variables: cold and
heat, drought, precipitation, and wind. We then consolidate these into a single in-
dex that measures abnormal weather deviations. This composite index allows for a
comprehensive assessment of the overall impact of weather anomalies on economic
activity by integrating the diverse effects of different weather conditions into a unified
metric. This aligns with the increasing recognition of the need to consider additional
weather variables impacting economic activity beyond temperatures, which have his-
torically been the primary focus of the empirical literature (see for example Acevedo

2All data are available after 2019, but given the large volatility of macroeconomic data during
the Covid pandemic, we decided not to include this period in the sample.
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et al. (2020), Burke et al. (2005), Lucidi et al. (2022), and Natoli (2022)). Indeed,
recent years have seen the introduction of new indices, such as the ACI 3 for North
America and the E3CI4for Europe, which incorporate multiple weather indicators
and have been used by some recent works in the economics literature, such as Kim
et al. (2021).

In constructing a new index to study the impact of weather on the economy, our
contribution to the literature is twofold. First, we utilize gridded granular weather
data to compute abnormal weather deviations at the grid-cell level before aggregating
them at the country level, the spatial resolution required for our analysis. This
approach is crucial as it prevents the dilution of effects that can occur when different
areas within the same country experience different weather conditions. For example,
if Northern Italy experiences unusually cold temperatures in a given month while
Southern Italy experiences unusually hot temperatures, the economic impact of these
deviations is the sum of the effects of the cold weather in the North and the hot
weather in the South, not the effect of the average weather at the country level.
Although such situations are uncommon, given the spatially correlated nature of
weather realizations, accounting for them is essential.

Furthermore, when aggregating grid-cell level weather data to the country level,
we weight the data by proxies of economic activity, following the approach of Gortan
et al. (2024). This method ensures a more accurate representation of the economic
impact of weather deviations. When examining the impact of climatic conditions
and weather events on the economy, it is crucial to consider the varying exposure of
socio-economic activities within an administrative region. For instance, average tem-
peratures in the industrialized North of Italy may differ significantly from those in
the less industrialized South, and the magnitude of economic activities in these two
regions varies greatly. As a result, economic activity in Italy may be disproportion-
ately influenced by temperatures in the North compared to the South. Therefore, an
aggregate analysis of weather data that does not account for the geographical dis-
tribution of socio-economic activities may introduce bias in assessing the economic
impacts of climate realizations.

Lastly, as opposed to indices such as the E3CI, which adopt a specific computation
for each weather variable, we harmonize the computation across weather variables,
ensuring a consistent and comprehensive analysis.

We compute each of our weather indices as follows:

1. We first consider the daily grid-level variable Wc,d, where c denotes a given
grid-cell and d a day. This is for example the average daily temperature or
the total precipitation amount registered at a given grid-cell. As suggested in
Parnaudeau and Bertrand (2018), we detrend Wc,d to avoid negative (positive)
deviations being clustered at the start of the sample and positive (negative)
deviations at the end of the sample in the presence of climate time trends, such
as global warming.

3American Academy of Actuaries (2016).
4Giugliano et al. (2023).
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2. We then compute the calendar-month-specific percentiles Wt̃, which we use as
thresholds. It is natural to consider month-specific thresholds since weather
variables exhibit strong seasonal patterns. We favor month-specific percentiles
over day-specific ones to reduce noise. The use of calendar-specific thresholds
represents a core difference from works such as Kotz et al. (2022), which utilize
percentiles computed on the unconditional full time series. Furthermore, note
that the use of calendar specific thresholds achieves seasonal adjustment by
construction.

3. For each month, we compute the total in the days that exceed the threshold:

WMc,m,y =
Dm∑
d=1

Wc,d1{Wc,d ≥ Wt̃},

where Dm denotes the number of days in a calendar month m, and 1{} is an
indicator function that takes on value 1 when the daily observation is above
the respective month-specific threshold.

4. These grid-cell level measures are aggregated to the country level using both
a grid-cell level proxy for economic activity and administrative areas from the
GADM dataset. The aggregation procedure is detailed in Gortan et al. (2024).
We prefer using nocturnal light levels (Li et al., 2020) over alternative popula-
tion weights because they provide a more accurate proxy for economic activity
related to production, though the results are similar using either method5. The
result of this aggregation is denoted asWMC

m,y, where C represents the country
index.

5. Finally, we standardise the weather index using month-specific means and stan-
dard deviations:

WMC
m,y − W̄C

m

σCm

This standardization accounts for the inherent seasonal variability in weather
conditions, allowing for a more accurate comparison across time as well as
across weather variables.

Finally, the cold, heat, drought, precipitation, and wind shocks are averaged to
obtain the Composite Weather Index (CWI), displayed in Figure 1, which shows the
three country-specific CWIs, in addition to their smoothed versions, a 5-year window
moving-average. The individual weather components of the CWIs for Germany,
France and Italy are presented in Appendix 1 in Figures 16, 17 and 18, respectively.

Appendix 1 also gives additional details on the computation of these weather
shocks and the data used. Our preferred computation of the weather indices is the
one that uses the 95th percentile of the calendar-month-specific distribution as the

5This robustness check is not included in the main text for brevity but is available upon request.
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threshold. However, in Appendix 3.4 we show that our results are robust to com-
puting the CWI using the 98th or 99.9th thresholds.

Constructing weather shocks in this way has several advantages. First, seasonal
adjustment, a key aspect when working with weather variables, is obtained by con-
struction. Second, we obtain series that are effectively standardized and hence easier
to interpret.6 Furthermore, the components do not exhibit strong auto-correlations,
and unit-root tests do not reveal changes in trends. On the economic side, we argue
that measuring deviations from calendar-specific historical averages is an advantage
since it allows to look at impacts of “abnormal” weather conditions (in many ways
similar to the notion of deviations from a “steady state”). Furthermore, looking at
large deviations is important since it makes it more unlikely for economic agents to
be able to forecast these events and to incorporate them in their economic decisions
before the actual climate realization.7 The monthly frequency at which we construct
our shocks is crucial in this respect, and also allows us to claim exogeneity of the
weather components with respect to the aggregate economic variables that we con-
sider (see Section 3.2). We can thus interpret our weather indices, both composite
and components, as macroeconomic “shocks” (V. A. Ramey, 2016). Furthermore,
these components have the desirable feature highlighted in Natoli (2022) that they
not only measure isolated large weather events but also take into account the ac-
cumulation of several smaller (but only when these are relevant, that is above the
threshold) events within the same month. Indeed, while economic agents might be
able to workaround isolated large weather events (hence without hinging economic
output), this might not be possible when the abnormal events are frequent within a
short time span.

We perform several robustness checks on the computation of the Composite
Weather Index (CWI). Appendix 3.2 presents the CWI when this is computed by
counting the number of days in each month that exceed the specified threshold8

This approach explicitly accounts for accumulation effects. Appendix 3.3 shows the
results when the CWI is computed by first aggregating the weather observations
at the country level and then constructing the shock by computing the exceedance
values and standardizing. This approach yields less precise estimates of the effects,
resulting in some responses being more confounded. In Appendix 3.1 we also pro-
pose a falsification test, we randomly shuffle the observations of the weather indices,
reassigning them to different months rather than their actual month of observation.

6Note that performing such a month-specific standardization delivers a series that is 0-mean and
1-standard deviation, in the same way as a traditional standardization would.

7Temperature and other weather forecasts typically drop in accuracy as the horizon increases,
quickly becoming relatively unreliable, even when the most advanced forecasting methods are em-
ployed. See for example Lopez-Gomez et al. (2023).

8Formally,

˜WM c,m,y =

Dm∑
d=1

1{Wc,d ≥ Wt̃}.
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The remainder of the analysis is then conducted following the standard procedure.
The IRFs that we obtain are non-significant, suggesting that our weather shocks do
not exhibit spurious effects and reinforcing the validity of our findings.

As we have discussed, weather shocks constructed in this way broadly measure
large deviations from historical calendar-specific averages. We believe that we should
think of these as capturing weather events that lead to rescheduling of economic ac-
tivity and have effects via other economic channels such as shifts in sectoral demand
and supply. This differs from the impacts of natural disasters leading to destruction
of human and physical capital often studied in the literature (see Kruttli et al. (2023)
and Ferriani et al. (2023) among others). Note that in the European countries that
we study, natural disasters are relatively rare when compared to other areas of the
globe. For example, many studies focus on the United States (Kim et al., 2021),
where larger and more frequent natural disasters are observed. To further back this
argument, we use the EM-DAT International Disaster Database (Guha-Sapir et al.,
2016) to identify months when documented natural disasters are observed in the
three countries we study and set to zero the relevant weather shock observation cor-
responding to the month when the natural disaster occurred.9 When we perform
this robustness exercise our results are virtually unchanged, suggesting that natural
disasters are not the main force driving our results. These are displayed in Appendix
3.5.

Comparison to existing weather indices
Our weather indices bear some similarities to existing works. Here, we highlight the
key similarities and differences with the most closely related studies.

Several papers utilize deviations of weather variables, primarily temperatures,
from historical averages. For instance, Ciccarelli et al. (2023) examine changes in
mean temperature relative to historical means as well as changes in temperature
variability. Similarly, Parnaudeau and Bertrand (2018) use monthly deviations from
a 30-year average in temperatures, precipitation, humidity, and wind speed. Few
studies, however, focus on deviations from seasonal averages. Starr (2000), for ex-
ample, use Heating Degree Days (HDD) and Cooling Degree Days (CDD), adjusted
taking deviations from seasonal averages. Bloesch and Gourio (2015) employ tem-
peratures and snowfall, transformed by taking anomalous deviations from calendar-
month averages. As discussed above, this approach is crucial for evaluating the
impact of weather anomalies that are not aligned with typical seasonal variations,
as such events are likely to become more frequent with global warming. Moreover,
this method achieves seasonal adjustment by construction, allowing for a more ac-
curate assessment of weather impacts on economic variables. By accounting for
seasonal patterns, it isolates the true effect of unusual weather conditions from reg-

9Using EM-DAT, we classify as natural disasters weather-related events that implied either at
least 100 deaths, at least 1000 affected people or at least a total estimated damage of 1000000 US
dollars. Such events occurred over our 1990-2019 sample during 22 different months in Germany,
42 months in France and 22 months in Italy, and are mostly related to abundant precipitation (see
Table 2).
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ular seasonal fluctuations, providing a clearer understanding of how these anomalies
influence economic outcomes.

Some papers apply thresholds to weather variables to reduce noise. Additionally,
focusing on significant deviations from seasonal averages is important as economic
agents are unlikely to anticipate these events and factor them into their economic
decisions. This approach is used in Wilson (2019), who compute the number of days
above or below a given threshold to estimate accumulation effects, and in Kotz et
al. (2022), who construct two measures of yearly rainfall: the number of wet days
where precipitation exceeds a given percentile threshold and the total amount of
precipitation on those days. This thresholding method is akin to taking deviations
from unconditional (not calendar-specific) averages.

The majority of the literature calculates weather deviations at an aggregated
level (see, e.g., Billio et al., 2020; Ciccarelli et al., 2023; Giugliano et al., 2023). Few
studies compute weather indices at a high spatial resolution. For example, Bloesch
and Gourio (2015) calculate anomalous deviations from calendar-month averages at
the station level and aggregate them at the state level by simple averaging. Kotz
et al. (2022) use grid-cell level time series and then aggregate them to the regional
level by taking area-weighted or population-weighted means. Roth Tran (2020), who
studies the impact of temperatures, argues that what matters is unusual warm or
cold weather, which depends on both location and time of year. This argument
underscores the importance of calculating deviations specific to the calendar and at
a granular level, as averaging effects across different times and regions can lead to
attenuation bias.

Finally, several papers standardize the final weather index using season-specific
means and standard deviations (Bloesch & Gourio, 2015) or month-specific means
and standard deviations (Kotz et al., 2022). This eases the interpretation of the index
by accounting for seasonal variability and ensuring comparability across different
countries and weather indices.

To the best of our knowledge, this paper is the first to construct weather shocks
across five distinct variables (heat, cold, drought, precipitation, and wind) as anoma-
lous deviations from calendar-month-specific averages at the grid-cell level. These
deviations are then aggregated to the country level using economic activity proxies
for weighting. Furthermore, we standardize the indices using month-specific means
and standard deviations. This methodology provides the most precise computation
to evaluate the effects of anomalous weather deviations on economic activity.

3.1.2 Aggregate and sectoral economic data

The aggregate macroeconomic data that we use in the empirical analysis are un-
employment rate (in level), and the ECB main refinancing interest rate (3-month
Euribor, in level). These are standard macroeconomic series that are often included
in small-scale SVAR models to assess the dynamic impact of shocks on aggregate
macroeconomic activity (see for example Caggiano et al., 2014).

Instead of proxying output by industrial production like is often done (Kim et al.,
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Figure 1: Composite Weather Indices for Germany, France and Italy.

13



2021), we use various sectoral production series for each country. We use Eurostat’s
NACE Rev.2 sectoral classification. We consider sectors from section B to section N
(with the exception of section K, financial and insurance activities). As reported in
Table 1, these are: Manufacturing (C); Electricity, gas, steam and air conditioning
supply (D); Construction (F); Wholesale and retail trade, repair of motor vehicles
and motorcycles (G); Transportation and storage (H); Accommodation and food
service activities (I); Information and communication (J); Real estate activities (L);
Administrative and support service activities (N). Unfortunately, the services sec-
tions G to N are only available for France on a monthly basis. We do not include
section A, Agricultural production (which we could expect to be one of the most im-
pacted by weather shocks and has been extensively studied by previous literature),
because most of the series are aggregated at a yearly frequency and very few data
are available at a monthly frequency. Also note that large seasonal effects are likely
in this sector.

Section

C MANUFACTURING
D ELECTRICITY, GAS, STEAM AND AIR CONDITIONING SUPPLY
F CONSTRUCTION
G WHOLESALE AND RETAIL TRADE; REPAIR OF MOTOR VEHICLES AND MOTORCYCLES
H TRANSPORTATION AND STORAGE
I ACCOMMODATION AND FOOD SERVICE ACTIVITIES
J INFORMATION AND COMMUNICATION
L REAL ESTATE ACTIVITIES
N ADMINISTRATIVE AND SUPPORT SERVICE ACTIVITIES

Table 1: Sections from NACE Rev.2

From Eurostat we also collect producer price indices for sectors C (Manufac-
turing) and D (Electricity, gas, steam and air conditioning supply)10 and consumer
prices for energy and services.11

3.2 Econometric modelling

The objective of our econometric modelling is to estimate impulse response func-
tions (IRFs) to a given weather shock, in a given country. In this respect, we use
two approaches, namely SVAR models and Local Projections (LPs) as put forward
by Jordà (2005). Recently, Plagborg-Møller and Wolf (2021) have shown that the
two approaches lead to similar results asymptotically when the lag structure is un-
restricted.

10Note that for sector F (Construction) the ppi is only available at the yearly frequency.
11SERV: Services (overall index excluding goods) and NRG: Energy in the Eurostat prc hicp midx

dataset.
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3.2.1 SVAR modelling

We estimate a small-scale SVAR model for each of the 3 countries. The reduced-
form model is summarized by the equation

yt = A0 + A1yt−1 + · · ·+ Apyt−p + ut, (1)

where yt contains all the variables of the system in the following order: weather index,
sectoral production variables, producer prices, consumer prices, unemployment rate,
and short-term interest rates, for a total of 10 variables. As regards weather indices,
both the CWI and its components are sequentially introduced into the SVAR model.
Thus, matrices Aj for j = 1, . . . , p are 10×10 coefficients matrices. The reduced-form
residuals ut from this model are assumed to be such that ut ∼ N(0,Σ) where Σ is the
covariance matrix. In order to get the underlying structural shocks εt of the system,
we impose a linear relationship between εt and ut such that εt = Γut where Γ is the
matrix of contemporaneous relationships, that is within the month. Identification of
Γ is obtained via the Cholesky decomposition of Σ, using the predefined ordering,
and we adopt the customary unit standard deviation normalization. By imposing
this ordering, we assume that any unexpected change in economic variables does
not have any influence on severe weather events within the same month. However,
the medium-run evolution of economic variables can in turn influence severe weather
realizations.

Parameter estimation of the SVAR model is performed within a Bayesian frame-
work in the spirit of Giannone et al. (2015). The priors for the SVAR coefficients
are taken from the Normal-Inverse-Wishart family and are of the following form:

β|Σ ∼ N(b,Σ⊗ Ω),

Σ ∼ IW(Ψ,d),

where b, Ω, Ψ and d can be expressed as a function of the lower-dimensional vector
of hyper-parameters γ. Here, β is the vector of listed coefficients of the Aj matrices.
This class has two advantages: it includes the priors most commonly used in the
literature and, since the priors are conjugate with respect to the likelihood function,
the marginal likelihood is available in closed form. Giannone et al. (2015) set the
degrees of freedom of the inverse-Wishart distribution to d = n + 2, where n is the
number of variables included in the model, which is the minimum value that guar-
antees the existence of the mean of the IW distribution of Σ, given by Φ

d−n−1
. The

matrix Φ is diagonal with the vector ϕ on the main diagonal. We refer to Appendix
2 for additional details.

3.2.2 Local Projections

As an alternative to VAR models, Jordà (2005) introduced the Local Projection
(LP) approach to estimate IRFs. This approach has the advantage of being simple to
implement and extremely flexible for the integration of non-linearities in the analysis,
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as we do in Section 5. In addition, recent theoretical research has proved that IRFs
stemming from a LP approach converge to those obtained through a SVAR model
(Plagborg-Møller & Wolf, 2021). LPs allow to directly estimate IRFs for a given
variable of interest xt in a simple way through the horizon-specific equation

xt+h = ch + βhνt + Γh(B)yt−1 + uht+h for h = 0, 1, · · · , H (2)

where νt is the weather shock, and yt a set of control variables similar to those
included in the SVAR model in equation (1). It can be shown that βh is the response
of x at t+ h after a shock at t and the IRF is estimated by the sequence of βh.

The LP equation (2) can be easily adapted to a non-linear framework by assum-
ing that there exist two different regimes, for which the parameters are not equal.
To estimate these different parameters, we simply interact the right hand side of
equation (2) once with (1 − F (s)), interpreted as the probability of the economy
being in the first regime, and once with F (s), the probability of being in the second.
This non-linear pattern is integrated into the previous horizon-dependent equation
as follows:

xt+h = (1−F (st−1))[c
h
1+β1,hνt+Γ1,h(B)yt−1]+F (st−1)[c

h
2+β2,hνt+Γ2,h(B)yt−1]+u

h
t+h.
(3)

The F (.) function maps real values to the interval [0, 1] and a customary choice
is the logistic function:

F (st) =
e−γŝt

1 + e−γŝt
, ŝt =

st − µ

σs
(4)

where st is the transition variable taken as indicative of the regime with respect
to which potential non-linear effects are estimated, and µ and σs are its mean and
standard deviation. For example, if we take st as an indicator of the business cycle,
F (st) will be close to 0 during the low phases of the business cycle (regime 1) and
close to 1 during the high phases of the cycle (regime 2). This is what we do to test
the hypothesis put forward by Billio et al. (2020), see section 5.2. As output, we get
IRFs to various weather shocks in each regime.
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4 Main empirical results

This section presents the main results of our empirical analysis using the previ-
ously described data and models. We start by evaluating the dynamic impact of the
Composite Weather Index on sectoral production in European countries, focusing on
three sectors: manufacturing, energy, and construction. We then examine the effects
of individual weather shocks—heat, cold, drought, precipitation, and wind. The re-
sults are compared across three European countries: Germany, France, and Italy.
Thus, our findings encompass three dimensions: type of weather shock, production
sector, and country.

To capture the dynamic responses to weather shocks in each country, we esti-
mate Structural Vector Autoregressive (SVAR) models as specified in equation (1),
basing our empirical analysis on impulse response functions (IRFs). As explained in
the previous section, we maintain a consistent ordering of variables for each coun-
try, with the weather variable always ordered first. The variables included in each
SVAR model are one of the weather indices, production in the three sectors, sectoral
inflation, consumer price indices (HICP), the unemployment rate, and short-term in-
terest rates. Additional empirical results are presented in Section 5, including results
related to the production of services in France.

4.1 CWI shock

We first focus on the effects of a composite weather shock on sectoral production.
For each country, the IRFs of sectoral production to a one standard deviation shock
are presented in Figure 2.12

The construction sector is the most uniformly affected by a CWI shock. A stan-
dard deviation shock induces a significant decline in the construction sector across all
countries (Figure 2, right column). The effect on impact is similar across countries,
with a decrease of approximately 0.3 percentage points (pp) in construction output
growth. However, the post-shock dynamics differ. In Italy, the construction sector
experiences a persistent negative effect lasting about 15 months. In contrast, in both
France and Germany, the initial negative impact is less persistent, with production
returning to the steady state after 3 to 4 months. Notably, in Germany, construction
output rebounds between two and three months after the impact, ultimately com-
pensating for the initial decline. A detailed analysis of the drivers of these effects
will be provided in the next sections.

From Figure 2 (middle column), we alse see that a composite aggregate weather
shock results in an increase in energy production, which reverts to baseline levels
within a few months. However, this increase is significant only in Italy, where a
one standard deviation shock leads to an approximate 0.4 percentage point (pp)
increase in the growth rate of energy production. Italy experiences a brief decline
following the initial positive impact. In the following sections, we show that this

12Note that by convention, the IRFs start at date t = 1 which is the date of the initial impact.
Consequently they stop at date t = 41, that is 40 months after the impact.
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Figure 2: IRFs of production by sectors to the CWI shock, as well as 68%
confidence bands.

effect is primarily driven by colder weather, which increases energy demand from
both households and firms (see section 4.2.1).

The effects of a CWI shock on manufacturing production (left panel) exhibit
considerable heterogeneity. The response of the French manufacturing sector to
an aggregate weather shock is relatively muted. In Italy, there is a strong initial
increase of about 0.3 percentage points (pp), consistent with the observed increase
in energy production. However, this is followed by a quick return to equilibrium.
Conversely, the initial impact in Germany is slightly negative, around 0.1 pp, though
less pronounced, followed by a slight rebound.

Determining the precise sign and magnitude of a composite weather shock’s im-
pact on the manufacturing sector, as well as whether it should be classified as a
demand or supply shock, is challenging. The existing literature shows mixed re-
sults. For example, Ciccarelli and Marotta (2021) suggest that weather shocks with
physical consequences act as negative demand shocks, leading to declines in both
output and inflation across a panel of countries. In contrast, Kim et al. (2021) pro-
vide evidence that U.S. industrial production and inflation tend to move in opposite
directions following a composite weather shock, indicating that these act as supply
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shocks. Similarly, Deryugina and Hsiang (2014) find that temperature affects worker
productivity, suggesting a supply-side channel.

Consistent with Billio et al. (2020) and Olper et al. (2021), we find that France
is the most resilient country to weather shocks, while Italy is the most affected in
our analysis. These initial results suggest that composite weather shocks lead to
heterogeneous effects on sectoral production, despite an overall trend of greater co-
movement across countries.

4.2 Weather-specific shocks

Using the CWI is beneficial as it provides an overall sense of how sectors are
exposed to general weather conditions. However, it is crucial to examine specific
weather shocks to distinguish their individual effects on sectoral production. A
concern that might arise when using the composite CWI is its consolidation of all
types of severe weather events into a single index. Different types of weather events
may impact production differently, contributing to the observed heterogeneity across
sectors. To address this, we now examine the impact of the individual components
of the CWI on sectoral production. For each country involved in the analysis, we
sequentially assess the dynamic effects of the five weather-specific shocks—heat, cold,
drought, precipitation, and winds—on the production sectors.

To efficiently summarize the results, we present cumulative IRFs for each affected
macro variable at six (red bars) and twelve months (green bars), along with their
68% confidence bands. The analysis focuses on the responses of the three sectoral
outputs and sectoral prices (manufacturing and energy producer prices (PPIs), as
well as the energy component of consumer prices). Where necessary to highlight key
aspects of the propagation of weather shocks, we also provide selected IRFs in their
extended form.

4.2.1 Cold shock

Cumulated responses to a cold shock are presented in Figure 3 at the 6 and 12
months horizons (red and green bars respectively), for all countries. The first salient
result is that energy production (second pair of bars from the left) exhibits a clear
comovement across countries. Indeed, a cold shock generates a significantly positive
cumulated response of energy production in all countries at both horizons, highlight-
ing the persistence of this dynamic effect in the medium run. We also find that
producer price indices and consumer prices of energy increase. A second regularity
that emerges is that production in the construction sector is negatively affected by a
cold shock, at both horizons (except 12 months in Germany, which is not significant).

While the impact on construction can be attributed directly to adverse weather
conditions that hinder construction activities, the impact on energy production is less
straightforward to interpret. Therefore, we examine some selected extended IRFs,
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Figure 3: Cumulated IRFs at 6 and 12 months to a cold shock, as well
as 68% confidence bands.

which offer valuable insights into the propagation of this shock through the economy
via the energy sector (see Figure 4). Following a one standard deviation cold shock,
energy production in France experiences the most significant initial increase, rising
by approximately 1.5 percentage points (pp). In comparison, Italy sees an increase of
about 1 pp, while Germany experiences a rise of 0.8 pp. Despite these differences in
impact, the dynamics are similar across all three countries, with the impulse response
functions (IRFs) returning to the steady state within 4 to 8 months.

Interestingly, a substantial lagged increase in energy prices is observed in all
countries following a cold shock (second and third columns of Figure 4). There is a
distinct sequence in the reaction of energy prices: consumer prices react first, peak-
ing approximately one to two months after the shock. This is followed by producer
prices, which reach their peak between 6 and 11 months later, varying by country (6
months in France, 10 months in Italy, and 11 months in Germany).

These results can be explained by the fact that that a cold temperature shock
increases the demand for heating, subsequently leading to a surge in energy pro-
duction to meet demand, as well as in energy prices. This finding aligns with the
results presented by Lucidi et al. (2022), which provide evidence suggesting energy
demand as a major transmission channel for temperature shocks. Colombo and Toni
(2024) show that the main driver of this channel is the price of gas, which serves as
the primary source of heating in Europe as a whole. The authors show that a cold
temperature shock increases the demand for heating, subsequently leading to a surge
in gas demand, as well as energy production and energy prices. The lagged reaction
in producer prices that we observe could reflects the nature of long-term contracts
between companies and energy suppliers, making companies less sensitive to sharp
movements in prices compared to households. Indeed, these contracts often fix prices
for a set period, shielding companies from immediate fluctuations in energy costs.
This reduced sensitivity to price changes, compared to households, is a result of
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Figure 4: IRFs of output and prices of the energy sector to a cold shock,
as well as 68% confidence bands.

contractual agreements that typically lock in rates, thus insulating companies from
market volatility (see, e.g., McKinsey, 2021). Additionally, the simultaneous upward
movement of both output and prices suggests that the primary transmission channel
is indeed a demand shock.

4.2.2 Heat shock

The cumulated responses to a heat shock are presented in Figure 5. Compared to
a cold shock, we get that the overall dynamics tend to be opposite, with few excep-
tions. Energy production again exhibits a comovement (opposite to a cold shock)
across countries. Energy prices for both producers and consumers are adversely
affected, with the exception of Germany, where the response is not significant.

This pattern can be attributed to the same demand channel, where a heat shock
leads to reduced demand for heating energy. While one might anticipate that air
conditioning could increase energy demand during a heat shock, it is important to
note that air conditioning is not as widely used or as significant in Europe compared
to heating, resulting in a limited impact on energy consumption.13 Finally, this

13Note that air conditioning represents only roughly 1.2% of household electricity consumption
in the EU (Source: Odyssee-Mure, figure for 2021). Furthermore, the heating degree days are much
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Figure 5: Cumulated IRFs at 6 and 12 months to a heat shock, as well
as 68% confidence bands.

decrease in energy costs can lead to an increase in manufacturing production-for
which energy is a major input (see section 4.3). In this respect, the role of gas is
particularly important as it constitutes both a major input to industrial production
processes and it is a major source of heating for households (Colombo & Toni, 2024).

A notable aspect of the results from the cumulative IRFs is that a heat shock
leads to a substantial medium-term increase in construction production in Germany,
a smaller yet still significant rise in France, and no significant effect in Italy. Figure
9 further illustrates the full dynamic response to various shocks in the construction
sector. The fourth column distinctly highlights the contrast in short-term dynamics
between Germany, which experiences a significant increase, and Italy, which shows
a significant decrease in construction output immediately after the shock.

This outcome reflects the nature of the construction sector, which, as an outdoor
activity, is directly influenced by weather conditions. We find that a heat shock
tends to be beneficial for production in Northern European countries like Germany,
while it is more detrimental in Southern European countries like Italy. This contrast
between northern and southern regions is consistently supported by empirical liter-
ature. The impact of a temperature shock varies by latitude, resulting in different
effects across regions. Similar findings are presented by Kalkuhl and Wenz (2020),
who demonstrate strong evidence that changes in annual mean temperatures affect
economic output at the regional level in a non-linear manner. Specifically, increases
in temperature tend to enhance gross regional product (GRP) in colder regions (de-
fined as areas with an annual mean temperature below 5°C) and reduce GRP in
hotter regions (see also Billio et al., 2020 on this point).

In examining the potential transmission channels of temperature shocks to the
construction sector, the literature has evidenced that these shocks predominantly
impact the labor supply of workers engaged in outdoor activities. For example,

higher than the cooling degree days in Europe (Eurostat, 2023).
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Graff Zivin and Neidell (2014), using data from the U.S., demonstrate that high
daily temperatures reduce labor supply among workers who work outdoors, which is
particularly relevant for the construction industry. They argue that higher temper-
atures can alter the marginal productivity of labor or the marginal cost of supplying
labor, thereby affecting the amount of time workers allocate to their jobs. Specifi-
cally, they find that “at daily maximum temperatures above 85°F (30°C), workers in
industries with high exposure to climate reduce their daily time allocated to labor
by as much as one hour.”

4.2.3 Precipitation and drought shocks

Cumulated responses to precipitation and drought shocks are presented in Figure
6 and in Figure 7, respectively, for all the countries. It is noteworthy that manu-
facturing production in Germany demonstrates high sensitivity to these weather
shocks: it experiences significant gains from precipitation shocks but is adversely
affected by drought shocks. This is consistent with the findings documented in Billio
et al. (2020). Conversely, in Italy, the manufacturing sector responds oppositely,
albeit to a lesser degree: precipitation shocks lead to a decline in production, while
drought shocks result in an increase. In France, the manufacturing sector appears
less responsive to these shocks.

Figure 6: Cumulated IRFs at 6 and 12 months to a precipitation shock,
as well as 68% confidence bands.

The energy sector generally shows limited responsiveness to these shocks, with
the exception of Italy, where energy production decreases following a precipitation
shock and increases after a drought shock. The construction sector in Italy is particu-
larly reactive and significantly benefits from drought shocks. As illustrated in Figure
9, a one standard deviation drought shock results in an immediate positive growth
of approximately 0.9% in the construction sector. This impact is notably persistent,
remaining statistically significant for about a year after the initial impact. Inter-
estingly, there is a symmetrical response observed with precipitation shocks, which
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lead to a comparable decline in the construction sector. Specifically, a one standard
deviation precipitation shock causes an immediate negative growth of about 0.9%
in the construction sector. This negative effect is similarly persistent, lasting for
approximately the same duration as the impact of a drought shock.

Figure 7: Cumulated IRFs at 6 and 12 months to a drought shock, as
well as 68% confidence bands.

4.2.4 Wind shock

Cumulative responses to a wind shock are depicted in Figure 8. A first notable
finding concerns the dynamic response of the energy sector to a wind shock. Energy
prices in all three countries are significantly lowered for both producers and con-
sumers. This widespread impact on energy prices can be attributable to the increase
in wind energy production.14 Despite comparable shares of renewable energy pro-
duction across Germany, France, and Italy,15 the proportion of electricity generated
from wind power significantly varies among these countries: 21.3% in Germany, 8.0%
in France, and 7.2% in Italy (IEA: International Energy Agency, figures for 2022).
As illustrated in Figure 8, the impacts on energy prices are comparable in Germany
and Italy, and somewhat lower, though still significant, in France. This discrepancy
can be attributed to Germany’s higher reliance on wind power generation and Italy’s

14Wind power, being a renewable energy source with zero fuel costs, typically bids into electricity
markets at a very low or even negative price. This tendency can lead to lower overall electricity
prices, particularly during periods of high wind generation, as these generators are dispatched before
more expensive fossil fuel plants. One of the primary mechanisms through which wind power affects
electricity prices is through the concept of marginal pricing, where the price of electricity at any
location and time is set by the cost of the most expensive generator needed to meet demand at
that moment. Since wind power is often among the lowest-cost sources available, its presence can
lower the marginal price of electricity, especially during high wind periods (see, e.g., “Regulation
(EU) 2024/1747 of the European Parliament and of the Council of 13 June 2024”, 2024).

15Germany: 20.8%, France: 20.3%, Italy: 19% (source: European Environment Agency, 2022)
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overall higher electricity costs. Germany benefits from a more diversified and tech-
nologically advanced energy mix, generally resulting in lower electricity generation
costs compared to Italy. Italy’s higher costs are partly due to a greater dependency
on natural gas and less favorable renewable energy resources, leading to increased
production expenses. Conversely, France enjoys relatively low generation costs, pri-
marily owing to its substantial reliance on nuclear power, which offers a stable and
cost-effective energy source. Consequently, the negative impact of increased wind
power generation on energy prices is more pronounced in Italy, causing similar price
responses to those observed in Germany, despite the countries’ differing reliance on
wind power.

Figure 8: Cumulated IRFs at 6 and 12 months to a wind shock, as well
as 68% confidence bands.

Our findings also indicate a significant decline in construction activity in Italy,
with a reduction of up to 4 percentage points within a year following the shock. In
contrast, Germany and France do not exhibit substantial effects. The persistence of
this impact is evident in the last column of Figure 9, where an initial drop in con-
struction output growth in Italy by approximately 0.5 percentage points is observed,
with the sector returning to its steady state after 20 months. This pronounced im-
pact on construction can be largely attributed to the sector’s vulnerability to wind
conditions, which can necessitate the suspension of crane operations and disrupt
ongoing construction projects. Notably, this adverse effect is not as pronounced in
Germany and France.
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Figure 9: IRFs of construction production to the various types of weather
shocks.
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4.3 Propagation of shocks and policy recommendations

Understanding how the effects of a weather shock propagate across different sec-
tors is crucial. For instance, it’s important to investigate how the manufacturing
sector might be impacted either directly—through reduced productivity or dimin-
ished demand for specific goods—or indirectly—through its interactions with other
sectors, such as energy. Although developing a comprehensive structural model with
an input-output framework, is beyond the scope of this study (see, e.g., Basu, 1995),
our empirical model provides valuable insights into assessing these effects.

We examine the indirect effects of a weather shock on the manufacturing sec-
tor through its impact on the energy sector. To this end, we present the complete
dynamics of selected impulse response functions (IRFs) in Figure 10. This figure
illustrates the dynamics following a heat shock, which reduces energy production
across all countries. This shock results in an immediate and significant decrease
in energy production due to reduced household heating demand (Colombo & Toni,
2024). Consequently, energy prices for both producers and consumers drop, leading
to lower input costs for manufacturing and an increase in manufacturing output.
The effect on manufacturing is observed across all countries, with production rising
by approximately 0.2 to 0.3 percentage points and showing significant persistence.
The peak of the IRFs for manufacturing production is reached approximately 9 to
15 months after the initial shock.

What are the policy implications of these results? As stronger and more fre-
quent weather shocks are expected in the future, it is crucial for policymakers to
develop strategies that adapt to, mitigate, and build economic resilience against
shocks related to climate change. Our analysis identifies the construction sector as
the most exposed to weather shocks due to its outdoor nature and direct depen-
dence on weather conditions. The magnitude and direction of these shocks vary by
the latitude of the country, indicating that domestic policy responses should be tai-
lored to support the sector in the event of adverse weather conditions. Notably, the
construction sector in Northern countries is likely to benefit from global warming.

The energy sector exhibits a distinct pattern in response to weather shocks. These
shocks significantly affect relative prices, particularly energy prices, which in turn can
influence manufacturing production through changes in input costs. This underscores
the need for coordination among countries within the European Union. One approach
could be to assist countries in achieving an optimal energy mix that can help mitigate
large fluctuations in energy prices, such as those caused by temperature shocks.
To avoid exacerbating climate change, this energy mix should not rely heavily on
greenhouse gas (GHG)-emitting energy commodities, such as coal, as is currently
the case in Germany. The European Commission could provide strong incentives for
countries to transition towards greener energy sources.
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Figure 10: IRFs of output and prices of the energy sector to a heat shock,
as well as 68% confidence bands.
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5 Additional results

In this section, we present additional empirical results, focusing first on ser-
vice production, then on non-linear patterns in the responses to composite weather
shocks.

5.1 Dynamic effects of weather shocks on services

Detailed monthly data on services prices is available for all three countries,
whereas data on services output is available only for France.16 We compute Impulse
Response Functions (IRFs) from various weather-specific shocks by incorporating
service production into a Structural Vector Autoregressive (SVAR) model, following
the same methodology applied to other sectors in the previous section.

Figure 11 displays the cumulative IRFs of inflation in the services sector to vari-
ous weather-specific shocks across all countries. There is notable heterogeneity in the
responses of service prices to weather-specific shocks across different countries, with
service prices typically exhibiting limited movements in response to these shocks.
However, when significant, the responses of services inflation follow the direction of
the impact of production in the construction sector, suggesting demand complemen-
tarities between services and the construction sector (see Figures 3, 7 and 8). This
is the case for cold shocks, which lead to a significant decrease in service prices in
both Germany and Italy, as well as the price movements that follow drought and
wind shocks in Italy.

Figure 11: Cumulated IRFs at 6 and 12 months of HICP inflation in
services to the five weather shocks for all countries.

Figure 12 illustrates the cumulative responses of various French service sub-
sectors, ranging from G (Wholesale and retail trade) to N (Administrative and support

16According to Eurostat, detailed data on production in services have been available only from
2016 onwards for Germany and are not available for Italy.
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service activities), as detailed in Table 1. Compared to the production sectors ana-
lyzed in the previous sections, the response of service sector production to weather-
specific shocks is relatively muted. Nonetheless, heat shocks induce the most pro-
nounced reactions within the service sector. Notably, four sub-sectors—Wholesale
and retail trade (G), Transportation and storage (H), Accommodation and food ser-
vices (I), and Administrative and support service activities (N)—show significant
responses. Additionally, heat shocks lead to increased construction activity (see Fig-
ure 9). Consequently, this increase in construction affects complementary services,
such as retail trade and transportation (sectors G and H). Since both prices and out-
put in these services move in the same direction, this reinforces the evidence these
effects are driven by changes in demand.

Figure 12: Cumulated IRFs at 6 and 12 months of French production
in services to the five weather shocks. G: Wholesale and retail trade, H:
Transportation, I: Accommodation, J: Communication, L: Real estate,
N: Administrative support.

In this section we provided an empirical analysis of the dynamic effects of weather-
specific shocks on the service sector, with a detailed focus on France due to the
availability of comprehensive monthly data. Our findings indicate that, while service
production generally exhibits a muted response to these shocks compared to other
sectors, heat shocks notably provoke significant reactions in specific sub-sectors. The
analysis also reveals that these shocks often influence complementary sectors, like
construction, driving demand in associated services. Moreover, the impact on ser-
vice prices varies across countries. Specific weather shocks, such as cold shocks in
Germany and Italy, and drought and wind shocks in Italy, demonstrate significant
effects, again suggesting the presence of demand complementarities between services
and the construction sector. These results underscore the complex and heterogeneous
nature of weather-related economic impacts on services across different regions.
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5.2 Non-linearity to the business cycle

We address a result presented by Billio et al. (2020), which suggests evidence of
non-linearity with respect to the business cycle. Specifically, this would imply that
weather shocks have a more pronounced effect on sectoral production during reces-
sions compared to expansions. To evaluate this hypothesis, we estimate non-linear
impulse response functions (IRFs) to a composite weather shock on manufactur-
ing production across three countries. Our methodology involves estimating non-
linear Local Projections as described by equation (3), where we posit two regimes
of economic growth by using the European Sentiment Index (ESI) as the transition
variable. The ESI, a composite index based on various surveys conducted by the Eu-
ropean Commission, reflects business cycle conditions—showing low values during
periods of economic downturns and high values during periods of economic upturns.
This index is widely used in practice and tracks euro area business cycles in real-time,
as demonstrated by Bańbura and Modugno (2014). Figure 14 displays the IRFs of
manufacturing production in both economic growth regimes for the three countries.
Blue lines represent the IRFs during high-growth periods, while black lines denote
those during low-growth periods.
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Figure 13: Non-linear responses with respect to the business cycle of man-
ufacturing production to the composite weather shock CWI. Blue lines
correspond to the high-growth regime and black lines to the low-growth
regime.

Overall, we do not find large differences for any country between the IRFs of
manufacturing production in the two alternative regimes of growth, suggesting that
the hypothesis from Billio et al. (2020) does not hold against our background. This
discrepancy could possibly be due to differences in the definition of business cycle
phases. France is the country for which a short-run significant difference exists
in the two phases of the cycle. Indeed, manufacturing production appears to be
enhanced after a composite weather shock when the economy is in the low-growth
regime. In contrast, this shock depresses manufacturing production in the high-
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growth regime. In comparison to France, the reaction of manufacturing production
and macroeconomic variables to a composite weather shock in Italy and Germany
appears to be less sensitive to the business cycle.

5.3 Non-linearity to the season

We also examine potential non-linearities related to seasonal variations. To
achieve this, we apply the same non-linear Local Projections method, but use a sine
function as the transition variable. This function is designed to be 0 in January and
reach 1 in July, thereby capturing seasonal effects throughout the year. Our analysis
focuses on the impact of the CWI index on production sectors. Our findings reveal
no significant evidence of non-linearities in the effects when considering the seasonal
component. One reason for this may be the way we compute weather shocks—by
taking deviations from month-specific percentiles—which mitigates the issue of sea-
sonal non-linearities. This approach helps control for seasonal patterns and reduces
their potential impact on our results. However, it is worth noting that while we
do not observe pronounced seasonal non-linearities when using the composite index,
there could be nuanced non-linear effects associated with specific weather-related
shocks. This potential complexity warrants further investigation in future research.
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Figure 14: Non-linear responses with respect to the season of manufactur-
ing production to the composite weather shock CWI. Blue lines correspond
to Summer and black lines to Winter.

5.4 Cross-country spillovers

A potential concern when estimating separate SVAR models for each country
is the presence of cross-country spillovers, particularly when shocks are correlated
across countries. Indeed, the contemporaneous correlation between CWI indices is
0.71 for Germany and France, 0.33 for Germany and Italy, and 0.48 for France and
Italy.
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To investigate the presence of potential spillovers, we replicate the analysis from
the previous section, substituting the domestic CWI shock with the residual part of
the foreign CWI shock that is not explained by the domestic shock. This involves
first estimating a regression of the foreign CWI on the domestic CWI, then using
the residuals from this regression in our benchmark SVAR model to compute IRFs.
The results, presented in Figure 15, show that cumulated impulse responses are
non-significant at both 6- and 12-month horizons. This suggests that cross-country
spillovers are not a concern in our application.
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Figure 15: Cumulated responses to a shock in the residual foreign CWI
on domestic sectors. The whiskers represent 90% confidence intervals.
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6 Conclusions

This paper investigates the short- to medium-term dynamic impacts of weather
shocks on sectoral production and prices in Germany, France, and Italy, the three
largest European economies. We introduce an innovative monthly composite weather
index (CWI), constructed from daily weather data. This index captures deviations
from seasonal weather trends—such as cold and heat conditions, drought, precipita-
tion, and wind—aggregated at the country level and weighted by proxies of economic
activity. This novel approach provides a refined measure of weather’s economic im-
pact. Our analysis extends the existing literature by examining a broader range of
sectors and weather shocks beyond the traditional focus on temperature. We uti-
lize Structural Vector Autoregression (SVAR) models to estimate impulse response
functions for both composite and weather-specific shocks.

Our findings reveal several key insights. The construction sector is directly af-
fected by weather conditions; cold shocks cause significant declines in output, while
wind shocks also have a negative impact, though less pronounced. Notably, heat
shocks benefit construction in northern Europe (e.g., Germany, a colder country)
but are detrimental in southern Europe (e.g., Italy, a warmer country), highlighting
a significant latitude effect. Second, the energy sector is influenced through both
demand and supply channels. Temperature fluctuations increase the demand for
heating during cold spells, while wind affects the supply side by altering the cost
of electricity production. This dual impact demonstrates that weather conditions
can alter the sector’s dynamics from multiple angles. Third, the manufacturing
sector is less directly affected by weather shocks. Instead, it experiences indirect im-
pacts primarily through changes in energy input costs: weather-related disruptions in
the energy market influence manufacturing output via fluctuations in energy prices.
Moreover, there is substantial heterogeneity in sectoral responses across countries.
France shows considerable resilience to weather shocks, with manufacturing largely
unaffected except by heat through energy costs. In contrast, Italy exhibits height-
ened vulnerability, particularly in the construction sector, which suffers significant
and persistent declines due to adverse weather conditions. This finding aligns with
previous research by Billio et al. (2020) and Olper et al. (2021).

The present study is, to the best of our knowledge, the first to explicitly ex-
plore the effects of weather shocks on the services sector. We find that services
exhibit demand complementarities with construction, as output and prices tend to
move together. However, our analysis is limited to France due to data constraints.
Finally, our results do not reveal significant non-linearities related to the business cy-
cle or seasonal variations in response to weather shocks. Furthermore, cross-country
spillovers from weather shocks do not appear to be a significant issue.

In light of these findings, we recommend the implementation of a coordinated Eu-
ropean energy policy to mitigate the economic fluctuations caused by weather-related
disruptions. This policy should address the observed sectoral and geographical dif-
ferences to better manage the impact of weather shocks on economic activity.

35



References

Acevedo, S., Mrkaic, M., Novta, N., Pugacheva, E., & Topalova, P. (2020). The
effects of weather shocks on economic activity: What are the channels of
impact? Journal of Macroeconomics, 65, 103207.

American Academy of Actuaries, C. S., Canadian Institute of Actuaries. (2016). Ac-
tuaries climate index: Development and design (tech. rep.). American Academy
of Actuaries. https://www.actuariesclimateindex.org

Arent, D. J., Tol, R. S., Faust, E., Hella, J. P., Kumar, S., Strzepek, K. M., Tóth,
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Appendices

Appendix 1: Weather data

Weather data from ERA5 (Hersbach et al., 2020) at a regular latitude-longitude
grid of 0.25 is taken from the reanalysis era5 single levels dataset. In particular,
daily temperature corresponds to the 2m temperature (daily mean) variable; daily
total precipitation corresponds to total precipitation; and maximum daily wind to
10m wind gust since previous post processing. To aggregate the grid-level data to
the country level we employ the Database of Global Administrative Areas (GADM),
using the first level of resolution GADM0.17 To measure drought we instead use
the SPEIbase dataset v.2.9 (Begueŕıa et al., 2023).18 Finally, to proxy for economic
activity at the grid level we use night-time light intensity19 from Li et al. (2020).
These are used to weight weather observations at the grid-cell level when aggregating
to a lower spatial resolution, as in Gortan et al. (2024).

The computation of the heat, precipitation and wind shocks is exactly as pre-
sented in section 3.1.1. The computation of the cold shock is naturally adapted to
account for daily temperature observations that are below the 5th percentile instead
of above the 95th. For the drought shock we consider the monthly Standard Pre-
cipitation Index with a 3 months accumulation period SPEI3j,k. Since the SPEI
is available at the cell level and it is already standardised and thresholded at the
source, we limit ourselves to perform the aggregation procedure and standardisation
of the aggregated country level variable as follows. For each month j, the mean
value µSPEI3j and the standard deviation σSPEI3j are calculated. Then, the index is
obtained by standardizing the SPEI3 for each month j and year k, via the month-
specific means and standard deviations:

SPEI3stdj,k = −
SPEI3j,k − µSPEI3j

σSPEI3j

According to the canonical approach, positive SPEI values represent large values of
precipitation and negative values represent small values of precipitation. To main-
tain the consistency with the other components, we consider the opposite of the
standardized SPEI3j,k, as we want large positive values of SPEI3stdj,k to represent
drought months.

Figures 16, 17, and 18 illustrate the individual weather components of the Com-
posite Weather Indices (CWIs) for Germany, France, and Italy, respectively. Impor-
tantly, due to the methodology employed in computing the weather shocks—where
positive values indicate a shock and zero represents no shock—different weather
shocks that are negatively correlated do not offset each other. For instance, heat
and cold shocks, as well as drought and precipitation shocks, do not neutralize one
another.

17https://gadm.org/.
18http://hdl.handle.net/10261/332007.
19Measured in 2015.
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Figure 16: The 5 components of the CWI for Germany.
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Figure 17: The 5 components of the CWI for France.
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Figure 18: The 5 components of the CWI for Italy.
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Appendix 2: Bayesian estimation

Giannone et al. (2015) propose to use three priors pertaining to the normal-
inverse-Wishart family. The Minnesota (Doan et al., 1984), formalizes the idea that,
ex ante, all the individual variables are expected to follow random walk processes.
We specify it as follows. The conditional mean of the prior distribution is given by:

E[(As)ij|Σ] =

{
1 if i = j and s = 1

0 otherwise
,

so that an impact on a given variable only affects that variable at the next period in
time, without affecting any variable at different lags. The conditional covariance of
the prior distribution is given by:

cov[(As)ij, (Ar)kl|Σ] =

{
λ2 1

sα
Σik

ψj/(d−n−1)
if l = j and r = s

0 otherwise
,

where λ is the main hyperparameter and it controls the relative importance of prior
and data (that is, the variance associated to the prior, in other words, the degree of
confidence attributed to the prior). When λ→ 0, no weight is given to the data and
vice versa for λ→ ∞. α is an hyperparameter that controls how fast this covariance
should decrease with the number of lags and ψj is the j

th entry of ψ, which controls
the variance associated to each variable. Some refinements of the Minnesota prior
have been proposed in order to favour unit roots and cointegration, grounded on the
common practices of many applied works. These take the form of additional priors
that try to reduce the importance of the deterministic component of the VAR model.

The sum-of-coefficients prior is based on the idea that a “no-change” forecast is
a good forecast at the beginning of the period. It is implemented by adding at the
beginning of the sample artificial data constructed in the following way:

y+
n×n

= diag

(
ȳ0
µ

)
=


ȳ1
µ

0 · · · 0

0 ȳ2
µ

· · · 0
...

...
. . . 0

0 0 0 ȳn
µ


x+

n×(1+np)
=

[
0

n×1
, y+, · · · , y+

]
,

where ȳj denotes the average of the first p observations for each variable j = 1, · · · , n.
This prior implies that the sum of the coefficients of each variable on its lags is 1
and that the sum of the coefficients of each variable on the other variables’ lags
is 0. It also introduces correlation among the coefficients of the same variable in
that variable’s equation. The hyperparameter µ controls the variance of these prior
beliefs: as µ → ∞, the prior becomes uninformative, while µ → 0 implies the
presence of a unit root in each equation and rules out cointegration.

Since in the limit this prior does not allow for cointegration, the single-unit-
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root (also called dummy initial observation) prior can be implemented to push the
variables towards the presence of cointegration. This is designed to remove the
bias of the sum-of-coefficients prior against cointegration, while still addressing the
overfitting of the deterministic component issue. It is implemented by adding one
artificial data point at the beginning of the sample:

y++

1×n
=

( ȳ0
δ

)′
=

[ ȳ1
δ
, · · · , ȳn

δ

]
x++

1×(1+np)
=

[
1
δ
, y++, · · · , y++

]
,

The hyperparameter δ controls the tightness of the prior implied by this artificial
observation. As δ → ∞, the prior becomes uninformative. As δ → 0, the model
tends to a form in which either all variables are stationary with means equal to the
sample averages of the initial conditions, or there are unit root components without
drift terms.

The three priors illustrated depend on the hyperparameters λ (the tightness of the
Minnesota prior), µ (the tightness of the sum-of-coefficients prior), δ (the tightness of
the single-unit root prior) ψ (which specifies the prior variance associated with each
variable) and α (which relates to the decay of the covariance of coefficients relative
to more lagged variables). We use the following parametrization: λ ∼ Γ with mode
equal to 0.2 and standard deviation equal to 0.4; , µ ∼ Γ with mode equal to 1 and
standard deviation equal to 1; δ ∼ Γ with mode equal to 1 and standard deviation
equal to 1; α ∼ Γ with mode equal to 2 and stadard deviation equal to 0.25. The
hyperprior for the elements in ψ is set to an inverse-Gamma with scale and shape
equal to 0.0004. Note that these are not flat hyperpriors. This guarantees the
tractability of the posterior and it helps to stabilize inference when the marginal
likelihood happens to show little curvature with respect to some hyperparameters.
Please refer to the original paper for additional technical details.
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Appendix 3: Robustness checks20

3.1 Falsification test by randomising the dates of the weather shocks

The initial robustness exercise we propose is a falsification test. In this test, we
randomly shuffle the observations of the weather indices, reassigning them to different
months rather than their actual month of observation. The remainder of the analysis
is then conducted following the standard procedure. Figure 19 (equivalent of Figure
2) shows the result of this excercise. The IRFs are non-significant, suggesting that
our weather shocks do not exhibit spurious effects and reinforcing the validity of our
original findings.

Figure 19: IRFs of production by sectors to the randomised CWI shock,
as well as 68% confidence bands.

3.2 Number of days in which the threshold is exceeded

Instead of calculating weather shocks based on values exceeding the month-
specific 95th percentile, an alternative approach is to compute them as the number

20For the sake of brevity, this section presents only one figure per robustness check. The full set
of robustness checks for additional figures is available upon request.
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of days in each month that surpass this threshold:

˜WM c,m,y =
Dm∑
d=1

1{Wc,d ≥ Wt̃}

This method accounts for accumulation effects, reflecting situations where economic
activity is postponed due to adverse weather events (Natoli, 2022). Due to the stan-
dardization process and the similarity in daily exceeding values, the resulting weather
shocks are highly comparable. Figure 20 illustrates the alternative computation of
the shock for Germany, showing results that are nearly identical to those obtained
using the baseline computation, thereby yielding virtually equivalent outcomes in
the empirical analysis.

Figure 20: Alternative computation of the weather components for Ger-
many.
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3.3 Country level shocks instead of grid-cell level shocks

Figure 21 presents the equivalent of Figure 4, with weather shocks computed by
first aggregating the weather observations at the country level and then constructing
the shock by computing the exceedance values and standardizing. This approach
yields less precise estimates of the effects, resulting in some responses being more
confounded. For example, the energy producer price index (PPI) and energy harmo-
nized index of consumer prices (HICP) in Germany show more variability and less
clear responses.

Figure 21: IRFs of output and prices of the energy sector to a cold shock
(country-level computation), as well as 68% confidence bands.

3.4 Using different percentiles

Figures 22 and 23 demonstrate that the computation of the CWI is robust to
using different percentiles as thresholds, specifically the 98th and 99.9th percentiles,
instead of the 95th used in the main body of the paper.

3.5 Excluding natural disasters

Figure 24 demonstrates that our results remain robust even when excluding
months from the weather-specific indices during which natural disasters, as clas-
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Figure 22: IRFs of production by sectors to CWI shock computined using
98th percentiles as thresholds, as well as 68% confidence bands.

sified in the EM-DAT dataset, occurred. The specific natural disasters excluded are
detailed in Table 2.
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Figure 23: IRFs of production by sectors to CWI shock computined using
99.9th percentiles as thresholds, as well as 68% confidence bands.
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Date Disaster Type Total Deaths Total Affected Total Damage, Adjusted (’000 US$) Country

1990-01-25 Storm (General) 8 2687818 Germany
1990-02-03 Storm (General) 7 1343909 Germany
1990-02-03 Storm (General) 23 2015864 France
1990-02-25 Storm (General) 15 2687818 Germany
1990-02-28 Storm (General) 24 2687818 Germany
1991-04-20 Cold wave 1658909 France
1992-09-22 Severe weather 47 2000 834270 France
1992-10-31 Riverine flood 1000 1433484 Italy
1993-07-05 Hail 2 1518 101294 France
1993-09-22 Storm (General) 10 202 1012939 France
1993-09-22 Storm (General) 8 1000 1266173 Italy
1993-12-20 Riverine flood 4 1215526 France
1993-12-21 Riverine flood 5 100000 1215526 Germany
1994-07-03 Lightning/Thunderstorms 5 1273880 Germany
1994-11-01 Riverine flood 68 17300 18361882 Italy
1995-01-21 Storm (General) 5 30000 614566 Germany
1995-01-21 Storm (General) 16 5000 1344362 France
1997-01-04 Cold wave 23 10000 France
1997-07-04 Riverine flood 5200 656354 Germany
1997-07-26 Forest fire 1259 France
1998-05-01 Landslide (wet) 3682 51526 Italy
1999-01-18 Flood (General) 1100 France
1999-05-11 Riverine flood 7 100000 755465 Germany
1999-05-30 Storm (General) 3 100020 France
1999-11-12 Flash flood 36 3005 878448 France
1999-12-24 Extra-tropical storm 15 2811033 Germany
1999-12-26 Extra-tropical storm 88 3400011 14055163 France
1999-12-27 Extra-tropical storm 8 7027581 France
2000-10-14 Flash flood 25 43000 13596043 Italy
2000-11-20 Flood (General) 5 2000 84975 Italy
2001-03-21 Riverine flood 3 8100 218747 France
2001-04-07 Riverine flood 7371 France
2002-08-11 Flood (General) 27 330108 18873085 Germany
2002-09-08 Riverine flood 23 2500 1936118 France
2002-10-26 Extra-tropical storm 11 2928582 Germany
2002-11-22 Riverine flood 2 10000 569447 Italy
2003-07-16 Heat wave 20089 6999853 Italy
2003-07-28 Forest fire 5 3004 France
2003-08-01 Heat wave 19490 6999853 France
2003-08-29 Riverine flood 2 350 1042024 Italy
2003-12-02 Flash flood 9 27000 2386314 France
2005-09-07 Flash flood 1 3000 France
2006-07-15 Heat wave 1388 France
2007-01-18 Extra-tropical storm 11 130 7763012 Germany
2008-02-29 Extra-tropical storm 5 1631127 Germany
2008-05-29 Severe weather 3 2038909 Germany
2008-08-03 Tornado 3 2100 108742 France
2009-01-23 Extra-tropical storm 11 4365193 France
2009-10-01 Riverine flood 35 5140 27282 Italy
2010-02-28 Extra-tropical storm 4 1342112 Germany
2010-02-28 Extra-tropical storm 53 500079 5677133 France
2010-06-15 Flash flood 25 2013168 France
2010-10-31 Storm (General) 3 5 1170321 Italy
2011-11-06 Riverine flood 6 2300 France
2012-06-01 Drought 1516849 Italy
2012-11-11 Riverine flood 4 1200 19120 Italy
2013-05-28 Riverine flood 4 6350 16205764 Germany
2013-06-18 Flash flood 2 2000 822851 France
2013-07-27 Hail 6030052 Germany
2013-11-18 Riverine flood 18 2700 979883 Italy
2014-01-18 Flash flood 2 1601 148345 Italy
2014-05-02 Flash flood 3 8010 148345 Italy
2014-11-29 Flash flood 5 3000 374571 France
2015-03-02 Severe weather 3 1072991 Italy
2015-06-29 Heat wave 3275 France
2015-10-03 Flash flood 20 1140902 France
2016-05-31 Flood (General) 7 2438717 Germany
2016-05-31 Flood (General) 5 24 2926461 France
2017-07-24 Wildfire (General) 12012 France
2018-01-24 Flood (General) 2750 433551 France
2018-10-14 Flood (General) 14 1476 396256 France

52



Date Disaster Type Total Deaths Total Affected Total Damage, Adjusted (’000 US$) Country

2018-10-29 Extra-tropical storm 12 2200 1282006 Italy
2019-05-15 Flood (General) 1200 Italy
2019-06-24 Heat wave 567 France
2019-07-21 Heat wave 868 France
2020-07-30 Heat wave 1924 France
2020-10-02 Storm (General) 18 12980 1093451 France
2021-04-05 Cold wave 6048157 France
2021-07-12 Flood (General) 197 1000 43201120 Germany
2021-07-23 Wildfire (General) 11600 63722 Italy
2022-02-18 Extra-tropical storm 3 1023156 Germany
2022-05-30 Heat wave 8173 Germany
2022-05-30 Heat wave 4807 France
2022-05-30 Heat wave 18010 Italy
2022-06-04 Severe weather 1 60015 France
2023-05-16 Flood (General) 15 46000 Italy

Table 2: Natural disasters in Germany, France and Italy as classified in
the EM-DAT dataset.

Figure 24: IRFs of production by sectors to CWI shock excluding natural
disasters months, as well as 68% confidence bands.
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