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Abstract

We identify supply and demand shocks to natural gas prices in the Euro Area
and the United States. Demand shocks are identified using exogenous temper-
ature variations, while supply shocks are identified through a high-frequency
strategy based on an extensive collection of market-relevant news. This ap-
proach enables us to estimate gas market elasticities and uncover key trans-
mission channels through which gas price shocks affect the broader macroe-
conomy. Our findings show that gas demand in the Euro Area adjusts more
slowly than in the United States, amplifying the inflationary impact of supply
shocks. This effect is reinforced by rising inventories and financial volatility,
pointing to a transmission channel driven by expectations and uncertainty.
The aggregate real effects appear limited, though we document substantial
sectoral heterogeneity.

Keywords : Gas price shocks, gas supply, gas demand, elasticities, proxy-VAR, ex-
ternal instruments, temperature deviations, inflation.

JEL classification: C32, E31, Q41, Q43.

∗An earlier version of this paper was available under the title “Gas Price Shocks and the Inflation
Surge”.

†London Business School. Email: dcolombo@london.edu
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1 Introduction

The recent outbreak of war between Russia and Ukraine has driven natural gas
prices to unprecedented levels, particularly in Europe, sparking significant interest in
a commodity that had previously received relatively little attention. Moreover, the
surge in gas and broader energy prices has coincided with rising inflation worldwide
(see Figure 1). These developments have raised several critical economic questions
that have shaped both political and academic debates: To what extent, and how
quickly, can economies respond to supply disruptions by substituting to alternative
gas supplies or to other energy sources, and how elastic is natural gas demand in
response to price increases (Moll et al., 2023)? How does the segmentation of natural
gas markets affect the transmission of regional shocks, in contrast to the more inte-
grated crude oil market? To what degree do gas prices reflect fundamental supply
and demand dynamics versus non-fundamental factors such as speculative activity
(Knittel & Pindyck, 2016)? How much of the recent inflation surge can be attributed
to gas prices as opposed to other factors, such as the post-pandemic economic re-
covery? Addressing these questions is challenging, as energy prices are endogenous
and respond to economic conditions, while the assessment of macroeconomic effects
is further complicated by a range of confounding factors that have been particularly
relevant in recent years.

This paper proposes a novel approach to identifying structural supply and de-
mand shocks in natural gas prices. Demand shocks are identified leveraging variation
in temperatures, while supply shocks are isolated using market-relevant news and
high-frequency data. Using the resulting series as external instruments in a VAR
setting, we analyze gas market dynamics and the broader macroeconomic transmis-
sion of these shocks. To the best of our knowledge, this allows us to provide the
first macro-level estimates of gas market elasticities based on exogenous variation
for both the Euro Area and the United States. Building on these estimates, we
then study the key transmission channels through which gas price shocks influence
the broader economy, highlighting significant differences between the Euro Area and
the United States. While many of these differences are attributable to well-known
disparities in gas balances and to fundamental supply and demand dynamics, we
also find evidence that supply shocks can be amplified through an expectations and
market volatility channel, with differing strength across the two regions. Finally, we
compare the identified gas shocks with other structural drivers of inflation to assess
the extent to which the recent surge in inflation can be attributed to gas price shocks
relative to other contributing factors.

Preview of results. Gas price shocks have economically meaningful effects. How-
ever, our analysis reveals significant regional differences in the effects and trans-
mission of gas price shocks between the Euro Area and the United States, shaped
by structural differences in supply composition, demand elasticity, and market dy-
namics. In the United States, domestic production dominates supply adjustments,
with supply elasticity gradually increasing over time, while in the Euro Area, where
imports play a larger role, adjustments occur more quickly but provide limited in-
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sulation from external shocks. Gas demand in the Euro Area is inelastic on impact,
adjusting only after several months, whereas in the United States, greater interfuel
substitution enables a faster response.

Inflationary effects are more pronounced in the Euro Area, where demand shocks
contribute up to a 2.5% increase in headline inflation and supply shocks up to 3%,
also feeding into core inflation. In contrast, the impact in the United States is
smaller and less persistent, with supply shocks showing no significant effect. These
inflationary dynamics reflect spot price movements, which are shaped by demand
adjustments and gas inventory responses. The inventory response in the Euro Area,
where stock levels do not offset price increases following supply shocks but instead rise
over the long run, gives evidence of an expectation-driven mechanism. Heightened
uncertainty appears to prompt stockpiling and precautionary demand, similar to the
channel identified by Kilian and Murphy (2014) for the oil market, further amplifying
inflationary pressures. Consistently, we observe a rise in financial uncertainty, likely
reflecting concerns over future gas supply. This contrasts with the shock identified by
Känzig (2021a) for the oil market, where volatility remains unchanged. Additionally,
the near one-to-one pass-through of gas prices to electricity prices in the European
market further reinforces inflation persistence.

The aggregate real effects of gas price shocks are limited but exhibit significant
sectoral variation. In the United States, gas demand shocks lead to a temporary
increase in industrial production, driven by heightened activity in the energy sector.
In contrast, in the Euro Area, supply shocks have a moderate negative impact, with
energy-intensive industries such as electricity, gas and steam, and chemicals experi-
encing the largest declines. Over time, cost increases are largely passed downstream,
mitigating the effects on output but leading to inflationary pressures, which are more
pronounced for goods than for services.

A comprehensive set of sensitivity checks confirms the robustness of our results
across various dimensions, including model specification, estimation technique, and
instrument construction. We show that the qualitative findings remain consistent
when estimating responses to the identified shocks using a frequentist VAR-OLS in-
stead of Bayesian estimation, while the quantitative results remain unchanged when
employing an informationally robust gas supply instrument that accounts for poten-
tial confounding factors and background information over event windows. Further-
more, we demonstrate that the constructed instruments do not capture unintended
mechanisms, as they exhibit no correlation with other macroeconomic shocks.

Related Literature and contribution. The starting point of this paper is to
isolate exogenous variation to construct instruments for natural gas demand and
supply, which serves as the foundation for the broader macroeconomic analysis. In
this sense, it contributes to the literature examining temperature as a key determi-
nant of natural gas prices. Most studies rely on heating and cooling degree days
(Mu, 2007; Nick and Thoenes, 2014; Wang et al., 2019, among others), while oth-
ers employ extreme temperature indexes (Dubin & Gamponia, 2007; Chen et al.,
2023; Baumeister et al., 2024). To the best of our knowledge, however, this paper
is the first to use temperature as an instrument for gas demand and to analyze the
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broader macroeconomic effects of gas demand shocks. Similarly, a substantial body
of research applies event-study techniques to assess the impact of various announce-
ments on gas prices, including EIA’s Weekly Natural Gas Storage Reports (Gay et
al., 2009; Bjursell et al., 2010; Halova et al., 2014; Prokopczuk et al., 2021), policy
measures (Goodell et al., 2024), and supply-related announcements or disruptions
(Bartelet & Mulder, 2020; Goodell et al., 2023). This paper integrates this event-
study literature with traditional VAR analysis by constructing an instrument for gas
supply using market-relevant announcements. Methodologically, we employ a high-
frequency identification strategy developed in the monetary policy literature (e.g.
Kuttner, 2001; Gertler and Karadi, 2015; Altavilla et al., 2019) and more recently
applied to other domains (Känzig, 2021a, 2021b). Additionally, we also propose an
informationally-robust version of the supply news instrument, to obtain cleaner iden-
tification (Romer & Romer, 2004; Nakamura & Steinsson, 2018; Miranda-Agrippino
& Ricco, 2021).

A key contribution of this study is the estimation of dynamic elasticities of gas
demand and supply in both the United States and the Euro Area using external
instruments. This analysis is related to a well-established body of research in the
oil market literature, which seeks to estimate such elasticities and assess the relative
importance of supply and demand forces (Hamilton, 2003; Kilian, 2009; Baumeister
& Hamilton, 2019; Caldara et al., 2019; Baumeister & Hamilton, 2023). The limited
number of studies estimating gas market elasticities has largely drawn from this lit-
erature. Early contributions relied on recursively identified VAR models (Wiggins &
Etienne, 2017; Hou & Nguyen, 2018; Nguyen & Okimoto, 2019; Rubaszek & Uddin,
2020), which impose a zero short-run supply elasticity. More recent work has adapted
the approach of Baumeister and Hamilton (2023), incorporating both zero and mag-
nitude restrictions while integrating prior beliefs (Rubaszek et al., 2021; Casoli et al.,
2022). In addition, some studies estimate sector-specific demand elasticities using
static approaches (Asche et al., 2008; Andersen et al., 2011; Pettersson et al., 2012;
Auffhammer & Rubin, 2018). However, their external validity is likely limited, and
simultaneity issues remain a common concern in this literature (Labandeira et al.,
2017). By leveraging exogenous variation in both the demand and supply of nat-
ural gas, we estimate both elasticities without relying on sign or zero restrictions.
Moreover, constructing distinct instruments for the United States and the Euro Area
allows us to address the challenge of natural gas market fragmentation—unlike the
globally integrated oil market—where the absence of a unified market structure pre-
vents the estimation of “global” elasticities (Szafranek & Rubaszek, 2023).

This study also relates to a well-established body of literature examining the
broader economic effects of commodity price shocks, which has traditionally focused
on oil price shocks in the United States (Zhou, 2020; Känzig, 2021a, as well as many
of the works previously discussed in the context of oil market elasticities). In con-
trast, research on the macroeconomic impact of natural gas shocks is more recent
and still developing. The Russian invasion of Ukraine in 2022 heightened concerns
about the potential economic consequences of gas supply disruptions, prompting an
initial wave of theoretical studies on their macroeconomic effects. Most of these stud-
ies suggest relatively limited output losses (Bachmann et al., 2022; Albrizio et al.,
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2023; Di Bella et al., 2024), though some early assessments warned of far more severe
economic consequences (Lan et al., 2022). Empirical research using VAR techniques
has also begun to examine the macroeconomic implications of gas shocks in the Euro
Area. Boeck et al. (2023) analyze the effects of natural gas price fluctuations using
a Bayesian VAR with sign restrictions, focusing on inflation expectations. Adolfsen
et al. (2024) employ sign restrictions to identify three structural shocks: supply,
demand (economic activity), and inventory shocks. Alessandri and Gazzani (2025)
employ a high-frequency methodology similar to that used for our supply instrument
to examine the impact of supply-side events in the Euro Area. We contribute to this
growing literature in several ways. First, we introduce a novel approach to iden-
tifying gas demand and supply shocks using external instruments (Lunsford, 2015;
Stock & Watson, 2018). This method yields gas balance responses that align with,
but are not restricted by, standard theoretical predictions on prices and quantities.
Second, we provide a comparative analysis of the macroeconomic effects of gas shocks
in the Euro Area and the United States within a unified framework. Third, we de-
velop an informationally robust version of the supply instrument, which accounts for
high-frequency movements in potential confounding factors, ensuring a more precise
identification of supply-driven shocks. Finally, for the Euro Area, we conduct a de-
tailed sectoral analysis, examining both prices and quantities to capture potential
heterogeneous effects and explore direct and indirect transmission channels.

Moreover, this study also relates to the literature on the pass-through of energy
shocks to inflation, which, once again, has primarily focused on oil price shocks in
the United States. Existing estimates suggest that while energy price shocks have a
strong impact on headline inflation, their effect on core inflation is less pronounced
(Gao et al., 2014; Känzig, 2021a; Kilian & Zhou, 2022). Recent studies estimating
the pass-through of gas price shocks to in the Euro Area report a wide range of
estimates. Headline inflation pass-through varies from 1.9% to 8.5%, while core
inflation effects range from 1.1% to 4.5% (López et al., 2022; Boeck et al., 2023;
Adolfsen et al., 2024), while broader estimates of energy price pass-through, based
on firm-level data, suggest an impact of up to 7.3% on inflation (Joussier et al., 2023).
Using an external instrument approach, we find that in the United States, only gas
demand shocks exhibit a significant yet moderate pass-through to headline inflation.
In contrast, in the Euro Area, where gas price shocks fully transmit to electricity
prices, the peak pass-through reaches approximately 2.5% for demand shocks and
3% for supply shocks. Notably, supply shocks also affect core inflation, with a peak
pass-through of 1%.

Our findings indicate that gas price shocks, alongside supply chain bottlenecks,
have played a central role in the post-pandemic inflation surge in the Euro Area. In
this context, we also contribute to the literature examining the factors driving the
recent rise in inflation (Bańbura et al., 2023; Bordo et al., 2023; Stiglitz & Regmi,
2023; De Santis, 2024).

Layout. The rest of this work is structured as follows. Section 2 provides key back-
ground information on the gas markets. Section 3 outlines our empirical strategy,
with a focus on the separate identification of supply and demand shocks to the price

5



of gas. Section 4 presents the main results. Finally, section 5 concludes. Several
appendices follow with additional details on the data, the econometric models we
use, further empirical results, and robustness checks.
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Figure 1: Inflation and energy prices

Notes: The top panel displays the Year-on-Year (YoY) headline inflation rate in
the Euro Area, along with the YoY inflation rates of Title Transfer Facility (TTF)
natural gas and Brent crude oil prices—benchmark indicators for European gas and
oil markets. The bottom panel shows the equivalent series for the US, where the
benchmarks are the NYMEX Henry Hub (gas) and WTI (oil). For comparability, gas
and oil spot prices are scaled by dividing by 100.
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2 Gas market background

This section outlines important characteristics of the natural gas market in the
Euro Area and the United States, emphasizing regional differences and comparing
them to the more globally integrated crude oil market. These distinctions highlight
the necessity of a differentiated approach to interpreting gas price shocks in both
regions and serve as the basis for our empirical strategy.

The global natural gas market is regionally fragmented, with prices for the same
commodity differing markedly across areas. This contrasts with the crude oil mar-
ket, which tends to be more integrated, trading at a relatively uniform price in most
places.1 The consequences of this segmentation became particularly evident during
Russia’s invasion of Ukraine, which led to a drastic reduction in pipeline flows to
Europe. European spot gas prices surged to a record high in August 2022, increasing
nearly 30-fold compared to August 2019, while gas prices in the United States re-
mained considerably lower. The difference in price movements is driven by regional
gas supply balances and variations in transportation infrastructure. In particular,
the United States is less affected by gas price shocks originating abroad due to its
self-sufficiency and limitations on LNG export capacity, which constrain the ability
of domestic production to reach international markets (IMF Blog, 2023).

Natural gas is a critical energy source in both the EA and the US, accounting
for 24% of total energy supply in the Euro Area and 28% in the United States. It
plays a crucial role as a primary fuel in residential and commercial heating, and it
also serves as an important input for industrial activities and electricity generation.
Residential consumption represents a substantial share of total demand — 35% in
the EA and 22% in the US— primarily for heating purposes.2 Gas demand is highly
sensitive to temperature fluctuations, particularly in winter (Chen et al., 2023).
Consequently, anomalous weather-driven variability can be exploited as a source of
exogenous variation to study the effects of gas demand shocks.

The supply structure of the gas market differs starkly between the two regions. In
the Euro Area, natural gas production has steadily declined over time, with monthly
output falling to negligible levels below 100 PJ in recent years (see Figure C16).
Correspondingly, import dependence has increased rapidly, from about half of its
total available energy derived from gas in the early 1990s to a record 90% in 2019 (see
Figure C19). The region sources gas from a select group of major suppliers, including
Russia, Norway, Algeria, and the US. Prior to the war in Ukraine, Russia dominated
the EU gas market, supplying 41% of gross available energy by 2020, making it the
fuel with the highest exposure to Russian imports. This share further increased to

1For example, Brent and WTI prices, the respective benchmarks for crude oil in the Euro Area
and the United States, have typically been highly integrated (Reboredo, 2011). Nonetheless, there
have been isolated episodes of limited decoupling (Baumeister & Kilian, 2016). For a more recent
examination of crude oil prices integration, see Mastroeni et al. (2021).

2These figures refer to the average for the period 2004–2022, own calculations based on IEA
(2024b) and IEA (2024a). A detailed breakdown of natural gas consumption by end use is provided
in Figure C20.
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approximately 50% of total imports by 2021, when imported gas accounted for over
80% of EU consumption (European Council, 2023). Due to the heavy dependence
on imports from a limited number of suppliers, disruptions to gas flows—whether
actual or simply perceived as potential—are closely monitored by financial markets
and can result in significant price fluctuations. The price fluctuations that follow
market-relevant events can be leveraged to study the effects of gas price shocks using
high-frequency identification techniques.

In contrast, the United States stands as the world’s largest natural gas producers.
Domestic production has grown substantially, doubling from approximately 2000 PJ
per month in the early 2000s to 4000 PJ in 2023 (see Figure C16). This remarkable
expansion has been largely driven by advancements in shale gas extraction (Acemoglu
et al., 2023).3 The US has progressively become a natural gas exporter, particularly
in the form of LNG to European and Asian markets. In the aftermath of Russia’s
invasion of Ukraine, exports saw a further sharp increase, with volumes more than
doubling imports in recent years (see Figure C16).

A second key difference lies in market structure and maturity.The US pioneered
gas market liberalization in the 1970s, adopting a gas-on-gas pricing model, and the
Henry Hub (HH) has served as the benchmark price since 1990. In contrast, histor-
ically, natural gas pricing in Europe has been predominantly linked to oil products.
Over the last two decades, gas prices have moved away from oil indexation to spot
pricing through a series of regulatory reforms aimed at liberalizing the European gas
market. The European Union began its liberalization process in 1992 with the EU en-
ergy market regulatory framework. However, meaningful developments only started
in the late 1990s, leading to the issuance of three European Directives designed to
foster competition and create a single market for natural gas. This reform process
culminated in the “Gas Regulation” of 2009, which further strengthened market in-
tegration efforts.4 These regulatory reforms led to the development of trading hubs
across Europe, with 11 main active hubs as of 2021, though varying significantly in
liquidity and infrastructure (Heather, 2021).5

After more than two decades, full liberalization is not yet completed in Europe
(Cardinale, 2019). Nevertheless, the gas market is increasingly integrated regionally.
The Dutch Title Transfer Facility (TTF) gas hub, recognized as the most liquid
trading hub, has emerged as the benchmark for European gas prices. The TTF,
listed on the ICE ENDEX futures exchange in Amsterdam, was established in 2003,
whereas the first gas hub in the region, the National Balancing Point (NBP), was
created in the United Kingdom in 1996. TTF overtook NBP as the largest gas hub
in 2017, accounting for approximately 75% of the total European gas trade in 2022

3Shale gas refers to natural gas confined within shale formations. Shales are fine-grained sed-
imentary rocks that can be rich sources of petroleum and natural gas. Over the past decade,
advancements associated with supply reliability, coupled with developments in horizontal drilling
and hydraulic fracturing, commonly known as “fracking”, have boosted natural gas production
from tight shale formations.

4Regulation (EC) No 715/2009 (the “Gas Regulation”).
5While there are approximately 30 gas trading hubs in Europe, not all of them are actively

operational.
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Q4).6

Additionally, the share of hub-indexed imported gas relative to fixed contracted
prices has grown significantly over time, representing approximately 80% of total gas
imports in the European Union in 2021 (International Energy Agency, 2021). As
part of this trend, oil-indexed contracts, which constituted over 90% of European
gas imports in 2005, declined sharply to just 25% by 2019 (International Energy
Agency, 2020). These developments enable the analysis of the economic effects of
gas price variations through the use of the TTF. Indeed, most studies that examine
the role of gas prices in Europe focus on the TTF price (e.g. Boeck et al., 2023;
Adolfsen et al., 2024; López et al., 2024). Jotanovic and D’Ecclesia (2021) provide
detailed evidence of a high level of integration among the European trading hubs,
with the TTF playing the role of the reference trading hub. In Figures C21 and C23
and Table C5 we also show that the dynamics of the different hub prices are greatly
correlated.

Crucially, while LNG has become increasingly important in the European market,
its expansion has not resulted in greater price divergence within the region. On the
contrary, the integration between European and global LNG markets has strength-
ened significantly, driven by the substantial growth of seaborne gas trade (Albrizio
et al., 2023). Historically, LNG prices did not closely track the TTF, reflecting its
limited role in the European market at the time. However, as LNG has gained promi-
nence, its price has become more closely aligned with the TTF, reducing divergence.
This pattern is demonstrated in Appendix C.4, Figure C22, and Table C5.

Finally, the futures natural gas market is well-developed and characterized by
high liquidity and substantial transaction volumes. These attributes are crucial to
our high-frequency identification approach, which studies infra-day changes in gas
futures prices. The Henry Hub futures, introduced at the New York Mercantile Ex-
change (NYMEX) in 1990, are the most actively traded worldwide (CME Group,
2021). Moreover, these futures have the longest available history, thus making them
a natural choice for analysis in the US. TTF is the most liquid and most widely
traded future for natural gas in Europe, hitting a record of 5.7 million contracts per
month in May 2023 (ICE, 2023).

The structural characteristics of natural gas markets in the Euro Area and the
United States inform our empirical strategy for analyzing the macroeconomic effects
of gas price shocks. In the Euro Area, the heavy reliance on imports and frequent sup-
ply disruptions justify the use of high-frequency variations in futures prices following
import flow disruptions to identify supply shocks to natural gas prices. In contrast,
in the United States, where domestic production is the primary source of supply,
supply shocks are identified by analyzing disruptions to domestic production. On
the demand side, the extensive use of natural gas for heating and its strong sensitiv-
ity to temperature fluctuations enable the identification of demand shifts. Regarding
the choice of a price benchmark that best represents overall market conditions, the
Henry Hub price effectively proxies natural gas prices in the United States due to its

6European Commission (2022).
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role as the primary reference price. Similarly, in the Euro Area, the Title Transfer
Facility has emerged as the key benchmark for natural gas prices, given its status as
the most liquid and widely traded market. While liquefied natural gas has grown in
importance, the TTF remains a reliable proxy for overall gas prices, as its increased
integration with LNG markets has strengthened its correlation with TTF spot prices.
Furthermore, the increased importance of hub-based pricing mechanisms in the Euro
Area further reinforces the TTF’s suitability as the region’s reference price.

3 Identification strategy

To study the impact of gas price shocks on the macroeconomy, our main model
of choice is the literature-standard structural vector auto-regression, which we iden-
tify with external instruments (proxy-SVAR). We identify both demand and supply
shocks to the price of gas, exploiting exogenous variation in temperatures and in
futures prices in a tight window around gas market-relevant news, respectively. We
then assess the responses to gas shocks in a model that includes gas balances as well
as several commonly studied macroeconomic variables. We also present results on
the interrelation of the natural gas and crude oil markets, as well as detailed sectoral
responses for the Euro Area. Finally, we examine in greater detail the impact of gas
shocks on inflation in the Euro Area via a historical decompositions exercise. We
also compare the impact of gas price shocks to other key drivers such as supply chain
bottlenecks, oil prices, and monetary policy shocks.

We estimate the models using Bayesian techniques. All the technical details on
the econometric modelling are given in Appendix A, and the results are presented
in section 4. The rest of this section details our identification strategy.

3.1 Gas price shocks

We identify a supply shock to gas prices using market-relevant news and high-
frequency data on natural gas futures prices. We also identify a demand shock by
exploiting exogenous variation induced by large deviations from seasonal averages
in temperatures. Gas surprises, constructed as high-frequency changes in gas prices
around exogenous market-relevant news, reflect variations driven by supply factors.
Conversely, temperatures provide exogenous variations in gas prices through their
impact on demand. For example, an unexpected warm spell during a typically cold
month reduces gas consumption for heating. The construction of these instruments
is detailed in the following subsections.

3.1.1 Market-relevant news and high-frequency data

To identify the effects of a gas price increase driven by supply factors, we adopt
a high-frequency identification strategy inspired by methodologies developed in the
monetary policy literature (Cochrane & Piazzesi, 2002; Nakamura & Steinsson, 2018;
Altavilla et al., 2019) and more recently adapted to the crude oil market (Känzig,
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2021a). Specifically, we analyze changes in gas prices occurring around market-
relevant announcements. Provided that the news are exogenous to broader economic
conditions and that these changes are measured within a sufficiently tight window,
these surprises—unexpected information that has not yet been incorporated into
market prices—can be interpreted as shocks (Ramey, 2016). Indeed, reverse causality
from economic conditions can be plausibly dismissed, as these factors are typically
already priced prior to the announcement and unlikely to change significantly within
the narrowly defined time window. Daily surprises that satisfy these requirements
can then be aggregated to monthly and used to instrument the price of gas in a
proxy-VAR setting.

In the gas market, identifying relevant gas-related news poses a substantial chal-
lenge due to the absence of a single, authoritative entity consistently capable of
influencing price movements, such as OPEC in the oil market or central banks for
monetary policy.7 To address this, we collect gas supply-related news from multi-
ple sources, relying on Reuters for both the Euro Area and the United States, and
carefully assess the exogeneity of each news. Additionally, we cross-reference the
most followed news on each release date to ensure that our event window is not
contaminated by concurrent significant news. We also exclude news from months
in which gas prices are mostly driven by temperature variations, as these represent
a confounding demand factor through the heating-related gas demand channel (see
the next section). For the Euro Area, we focus specifically on news related to gas
imports. As discussed in the previous section, the vast majority of gas consumed
in the region is imported, making import-related news both the most prevalent and
the most relevant. This focus is also motivated to give a clear interpretation of
the identified shocks, which can be viewed as exogenous disruptions to gas imports,
whether realized or anticipated. Our news coverage includes key suppliers of both
pipeline gas and LNG, highlighting factors that influence supply dynamics. This
includes disruptions, announcements from major energy companies, labor strikes af-
fecting gas fields, pipeline incidents (such as explosions, maintenance activities, or
new investment projects), and legislative developments related to gas imports. The
final sample comprises 72 supply-related news events, with 41 pertaining to Russian
flows, 13 to Norwegian flows, and the remaining 18 to other suppliers.

An illustrative example of supply news for the EA is the unexpected drop in
Norwegian gas flows that occurred on November 15, 2010 (see Figure 2). National
Grid data showed that flows through the Langeled pipeline—which transports gas
from the Nyhamna processing facility to the Easington terminal in the UK—were
reduced by approximately 14 MCM (Million Cubic Meters) due to unforeseen tech-
nical issues.8 This disruption left the British gas market undersupplied by around 4

7Prior to the invasion of Ukraine, Gazprom accounted for over 30% of Europe’s total natural gas
supply in 2021 (Milov, 2022), thus representing a key source of gas-related news due to its significant
role in the market. However, relying solely on Gazprom is insufficient, as its announcements are
released irregularly, and relevant developments often involve other major suppliers, geopolitical
events, or policy actions. To ensure comprehensive coverage, it is necessary to incorporate news
from multiple sources, capturing a broader spectrum of factors influencing gas prices.

8While Langeled does not directly connect to mainland Europe, the UK is part of the intercon-
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MCM, and the supply concerns triggered an increase in European gas prices, with
the TTF spot price rising by about 8% from the previous trading day. An example
of a price reduction is the one observed following the LNG Isle of Grain terminal
expansion in October 2010 (Figure D28). In contrast, an example of major news
related to Russian gas supply is the price increase after Gazprom’s announcement of
reduced flows for Nord Stream 1 maintenance in June 2022 (Figure D29).

Nov
 0

8

Nov
 0

9

Nov
 1

0

Nov
 1

1

Nov
 1

2

Nov
 1

3

Nov
 1

4

Nov
 1

5

Nov
 1

6

Nov
 1

7

Nov
 1

8

Nov
 1

9

Nov
 2

0

Nov
 2

1

18.0

18.5

19.0

19.5

E
U

R
 / 

M
W

h

Figure 2: Unexpected drop in gas flows from Norway through the Langeled
pipeline.

Notes: The figure shows the surprise in the spot TTF gas price related to the news
on November 15, 2010. The TTF spot price increased by more than 8% over the day,
reflecting the market’s reaction to the unexpected drop in gas flows. November 12,
13, 20, and 21 were non-trading days, and the close spot price is unavailable for these
dates. The values shown in the figure for these dates correspond to the last available
trading day’s price.

For the United States, following the same logic of focusing on the most relevant
and prevalent supply factors, we concentrate on news related to domestic production.
Unlike the Euro Area, where gas imports constitute the majority of consumption, the
U.S. benefits from substantial domestic production, making production-related news
the most relevant for identifying supply shocks. Our dataset includes 27 supply-
related news events, covering disruptions such as gas platform outages, maintenance
activities, and explosions. This focus allows for a clear interpretation of the identified
shocks as exogenous disruptions to domestic gas supply. The impact of supply-related
news on the Henry Hub (HH) price is illustrated in Figure D30. For example, on
June 15, 2009, Kinder Morgan announced maintenance on the Natural Gas Pipeline
Co. of America’s mainline at Compressor Station 198 in Marion County, Iowa, which
led to a 75% reduction in capacity in that area. Following this announcement, the
HH spot price increased by approximately 7%. A selected illustrative sample of our

nected European gas market through which gas can be transferred to continental Europe. Therefore,
disruptions in this pipeline can affect European supply and typically move European gas prices.
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news collection is presented in Table D6.

Construction of gas surprises. Using the collected gas-related news, we construct
a series of gas surprises by computing the (log) difference between the closing futures
price on the day of the news release and the closing price on the last trading day
before the news. This approach effectively captures the percentage change in price,
isolating the market reaction to supply-related information:

GasSurprisehd = F h
d − F h

d−1 (3.1.1)

where d represents the day of the news event, and F h
d denotes the (log) price of the

gas futures contract with a maturity of h months ahead on date d.9

A crucial choice when constructing the surprises is the width of the event win-
dow. Following Känzig (2021a), we opt for a daily window. This differs from the
monetary policy literature, where it is customary to use shorter windows. In the
gas market, there is no major news source with regularly scheduled press releases
that the market closely follows, as is the case with central banks. Furthermore, gas-
related announcements lack the clarity of monetary policy statements, necessitating
traders to invest more time in identifying and processing the information. Therefore,
intraday windows would miss much of the response to the news. By contrast, using
multi-day windows could introduce background noise that confounds the price reac-
tion. This concern is particularly relevant for the latter part of our sample, which
has been marked by an extraordinary series of events, particularly in Europe. An-
other important factor to consider is the selection of the futures contract maturity.
Since disruptions and supply adjustments in the gas market can have both short-
term and longer-term consequences, considering futures contracts with maturities
ranging from one month to one year is a natural choice. Thus, we take the first
principal component of the gas surprises spanning the first year of the gas futures
term structure,10 which is then rescaled to match the standard deviation of the un-
derlying surprises.11 To obtain a monthly series, we aggregate daily surprises within
each month by summing them. In instances where there is no gas-related news, the
monthly surprise is set to zero. Figure 3 shows the resulting monthly surprises series
for the Euro Area.

Note that we use this series to instrument the settlement price rather than the
average monthly natural gas price. This aligns with the critique of the standard
proxy-SVAR practice in the oil literature by Kilian (2024), who emphasizes that
relying on the average can result in the misattribution of effects driven by other
factors to supply news events.

9We use Dutch TTF gas futures for the Euro Area and the Henry Hub futures for the United
States.

10For the EA, we use the 1M, 2M, 3M, 4M, 6M, 9M, and 12M TTF futures contracts, while for the
US, we include all monthly maturities from 1M to 12M, as these have fewer missing observations.

11The average price revision following a surprise is 7% for the EA and 2.6% for the US when
calculated using the rescaled principal component. For front-month futures, these revisions increase
to 9.7% and 4%, respectively. This difference reflects the generally lower volatility of HH prices
compared to TTF prices, a consistent pattern observed throughout the sample.

13



Russia halts deliveries to Ukraine

Pipeline blast cuts Russian supply to Bulgaria

Unplanned mainteinance of
 Langeled pipeline

Poland fines
 Gazprom on NS

Putin announces supply boost

Yamal pipeline flows resume

Invasion of Ukraine

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

−30
−25
−20
−15
−10

−5
0
5

10
15
20
25

R
ev

is
io

ns
 in

 G
as

 P
ric

e 
(%

)

Figure 3: Euro Area gas supply surprises series.

Notes: This figure shows the gas surprise series, which is constructed as the first
principal component from changes in gas futures prices. We use TTF natural gas
future contracts spanning the first-year term structure around important announce-
ments in the gas market. The principal component is scaled to match the average
volatility of the underlying price surprises so that the y-axis can be interpreted as per-
centage deviations in futures prices. Red circles highlight important supply events.
In 2009M1 Russia halted its gas deliveries to Ukraine over a gas supply dispute. In
2009M4 a pipeline blast reduced Russian supplies to Bulgaria by 60%. In 2014M9
unplanned maintenance on the Langeled pipeline disrupted Norwegian gas imports.
In 2020M8 Poland fined Gazprom over Nord Stream 2. In 2021M10 Putin announced
that Gazprom would increase gas supplies to Europe. In 2022M2 flows resumed from
the Yamal pipeline. In 2022M3 gas prices surged following the invasion of Ukraine.
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To evaluate the adequacy of the gas surprise series, we further perform a com-
prehensive series of checks. One potential concern regarding our high-frequency
approach is that non-gas-supply-related news might affect the gas price within the
one-day event window. Furthermore, as discussed in Section 2, the recent disrup-
tions of the gas market have heightened the sensitivity of gas prices to a diverse array
of news, which can impact gas prices through various mechanisms, not limited to
supply disruptions. To assess the relevance of background noise within the surprise
series, we compare the daily changes in gas future prices on gas-related news with
the price changes on a sample of control days. Control days are chosen at random
among days that do not contain gas supply news.

As shown in the left panel of Figure 4, the price changes on news days and
control days are considerably different. Specifically, news days display significantly
higher volatility and noticeable spikes in prices, contrary to the surprises observed
in the control sample. Similarly, the estimated probability density function shows
that surprises on news days display higher variance and fatter tails (right panel).
This suggests that the presence of background noise is limited. Appendix E reports
additional checks on the gas surprise series, including tests on autocorrelation, corre-
lations with other macroeconomic shocks from the literature, and Granger’s causality
tests.
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Figure 4: Gas news days versus control days.

Notes: The left panel displays the daily changes in gas future prices on news and
control days. The right panel shows the empirical probability density function, es-
timated by using the Epanechnikov kernel. The ratio of the news variance over the
control variance is 3.11 and a Brown-Forsythe test for the equality of group variances
confirms that this difference is highly statistically significant (F-statistic: 12.93).

Nonetheless, the presence of confounding factors could still bias the results and
compromise the reliability of inference, as demonstrated by Nakamura and Steinsson
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(2018) in the context of monetary policy. To address this concern, we explicitly
account for potential confounding events and construct an informationally-robust
surprises series, which we show produces results that are virtually identical to the
baseline series. Following the approach of Miranda-Agrippino and Ricco (2021), we
refine the gas supply series by removing its own lagged effects as well as the contem-
poraneous and lagged effects of potential confounding factors. More specifically, we
obtain the informationally-robust surprises, IRSt, as the residuals from the following
regression:

GasSurpriseht = α0 +
2∑
j=1

ϕjGasSurpriseht−j +
2∑
j=0

xt−jΓj + IRSt (3.1.2)

whereGasSurpriseht denotes the gas supply surprise in month t for the futures con-
tract h, constructed as detailed previously, and xt is a vector of potentially confound-
ing series. We consider surprises in food prices constructed around the same daily
window used for gas-related news, as well as several relevant macroeconomic shocks
studied in the literature. Additional details, including a plot of the informationally-
robust series and the corresponding robustness check, are provided in Appendix I.1.
A similar exercise is displayed in Appendix E, Table E8, which reports the correlation
between gas surprises and several macroeconomic shocks from the literature.

Overall, these results suggest that the gas surprise series does not unintentionally
reflect the dynamics of oil supply and demand, aggregate demand, monetary policy,
policy uncertainty, or financial market volatility.

3.1.2 Temperatures and heating demand

We exploit a second source of exogenous variation in the real price of natural gas
to identify gas demand shocks. Specifically, we construct a proxy for heating demand
based on temperature deviations from seasonal averages. A positive “temperature
shock” reduces heating demand, leading to lower energy prices, whereas a negative
shock increases demand and raises prices (see, e.g., Colombo and Ferrara (2023) for
temperature effects on energy production and Pisa et al. (2022) on energy prices).

To capture demand-driven fluctuations in natural gas prices, we construct a
monthly instrumental variable as follows. First, we compute deviations from av-
erage temperature by subtracting, for each calendar day, the mean monthly average
temperature (computed across all years in the sample) corresponding to the month
in which the day is located. The resulting daily series is then aggregated to the
monthly frequency by taking averages across time. Next, we apply a threshold to
filter out minor fluctuations and retain only months with substantial temperature
deviations, reducing noise by setting to zero any observation within a standard de-
viation. Finally, we exclude the summer months (April to September), as the rela-
tionship between temperatures and gas prices during warmer months is ambiguous:
higher temperatures may either increase electricity demand for air conditioning or
reduce heating demand. Additionally, we exclude specific months affected by major
confounding factors, such as the COVID-19 pandemic. Appendix F further details
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the computation of the series.
A crucial requirement for this instrument is that, unlike typical seasonal tem-

perature fluctuations, large deviations from average temperatures are unanticipated
by economic agents. As a result, these deviations are not incorporated into trading
decisions and affect gas prices only through the heating demand channel, ensuring
the validity of the instrument.12 Figure F34 provides evidence suggesting that antic-
ipation effects are likely limited both in magnitude and in how far ahead they occur,
reinforcing the suitability of our approach within a monthly estimation framework.

Since gas traded at the TTF serves multiple countries, for Europe, we construct
an aggregate temperature measure based on the average temperatures of Belgium,
Germany, France, Luxembourg, and the Netherlands—countries that predominantly
rely on TTF gas. These averages are weighted by each country’s gas consumption.13

The resulting series is presented in Figure C24.14 Positive spikes in the series tend
to coincide with unexplained negative spikes in the price of gas, and vice versa.
Indeed, the series exhibits a strong negative correlation with the real price of gas,
even after controlling for relevant macroeconomic variables. This finding aligns with
the proposed demand channel and supports the relevance of the instrument.

Figure F36 shows the auto-correlation function of the temperature series, which
is consistent with interpreting temperature deviations as shocks.

12Temperature forecasts deteriorate significantly as the forecast horizon extends, remaining rela-
tively unreliable even with the most advanced prediction methods. See, for example, Lopez-Gomez
et al. (2023).

13At the country level, temperature is computed as a population-weighted average of grid-level
temperatures (see Appendix F). However, when aggregating temperatures across countries, we use
gas consumption as weights, as grid-level consumption data is not available. See Gortan et al.
(2024) for the weights used.

14Similarly, we construct the corresponding series for the United States by averaging temperatures
across states.
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Figure 5: Temperature shocks series for Europe.

Notes: This figure shows the temperature shocks index, which we construct as a
proxy for gas demand. Red circles highlight significant temperature-related events
in the gas market: 2010M12 was the coldest December in 100 years and the coldest
winter month since February 1986; 2013M3 witnessed a late-season snow event that
impacted Western Europe; 2015M12 was the warmest December on record for several
countries; 2018M2 saw a cold spell, commonly referred to as “The Beast from the
East”, characterized by cold winds and low temperatures; 2022M10 was the warmest
October on record in Europe.

If the primary mechanism through which temperature fluctuations affect natural
gas prices is heating demand, we would expect the strongest correlations to occur
during months when absolute temperatures necessitate heating. To support this
claim, we provide additional evidence of this relationship. Specifically, unexpect-
edly cold temperatures in typically warm days should have a minimal impact on gas
prices, as absolute temperatures would remain too high to justify widespread heat-
ing use. To assess this, we examine cooling degree days (CDD) and heating degree
days (HDD).15 Figure F35 presents the average CDD and HDD for the same set of
European countries used to construct the temperature series.16

When restricting the sample to months with low HDD, the correlation between
the temperature series and the residual gas price is significantly weaker compared
to months with high HDD. This indicates that temperature fluctuations primarily
affect gas prices when they lead to the activation or deactivation of heating systems.

15CDD and HDD serve as proxies for the energy required to heat and cool buildings. For the pre-
cise definitions, see https://ec.europa.eu/eurostat/statistics-explained/SEPDF/cache/92378.pdf.
The data is available at https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx.

16As before, we use gas consumption at the country level as weights to compute the weighted
averages of CDD and HDD.
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Conversely, when the sample is limited to months with high CDD, the correlation
remains lower than in months with low CDD, suggesting that cooling-related energy
demand has a relatively smaller impact on natural gas prices. A similar pattern
emerges when the sample is restricted to only winter or only summer months, moti-
vating the decision to focus on temperature deviations during winter months when
constructing the instrument. This approach helps reduce noise and enhances the
instrument’s relevance.

As shown in Figure E32, the two instruments never exhibit simultaneous spikes
within the same month. This separation ensures that demand and supply effects are
not misattributed, preserving the integrity of the identification strategy.

4 Results

This section presents the results for the Euro Area and the United States, ex-
amining the macroeconomic effects of gas price shocks and the key transmission
mechanisms that account for differences across shock types and regions. The second
part of the section examines the sectoral impact of gas supply shocks on both prices
and quantities in the Euro Area. For all specifications, the estimation sample spans
from 2004M1 to 2023M12.17 The impulse response functions (IRFs) are estimated
using a Bayesian approach (Bańbura et al., 2007), following the hierarchical frame-
work of Giannone et al. (2015). Technical details on the estimation methodology are
provided in Appendix A. Additionally, Appendix I demonstrates that our findings
are qualitatively robust when using a standard frequentist approach.

Our main specification includes seven variables: the real price of natural gas,
gas quantity (supply or demand depending on the type of shock), gas inventories,
the headline consumer price index, industrial production, financial volatility, and
the real price of crude oil.18 This specification allows us to study the dynamics
specific to the natural gas market while also assessing the broader macroeconomic
effects of gas price shocks. We estimate the model in log levels, meaning that all
impulse responses can be understood as elasticities. Importantly, the definition of
gas quantity depends on the type of shock being analyzed. When estimating the
effects of a gas demand shock, we define gas quantity as gas supply, which enables
us to measure the elasticity of supply. Conversely, when analyzing the effects of a
gas supply shock, we define gas quantity as gas demand, allowing us to estimate the
elasticity of demand.19 All responses are normalized to a one-time 10% increase in
the spot price of natural gas. A detailed overview on the data and their sources can
be found in Appendix C.1.

Figures 6 to 9 display the impulse response functions derived from our main spec-
ification. For better comparison, the left panels depict the effects of a gas demand

17We start from January 2004 as this is the earliest date for which TTF natural gas futures are
available.

18We use monthly settlement spot prices, in line with Kilian (2024).
19We construct gas demand as the sum of domestic consumption and exports, and we define gas

supply as domestic production plus imports.

19



shock, while the right panels illustrate the responses to a gas supply shock. The
full set of responses, grouped together, is provided in Appendix G. Figures 11 to 13
augment the baseline specification for the Euro Area with sectoral variables. Black
lines represent the responses for the Euro Area, while orange lines correspond to the
United States. Shaded areas indicate the 64%, 80%, and 90% confidence intervals.20

Gas supply and demand elasticities. Figure 6 presents the estimated supply and
demand elasticities for both regions. In the United States, price elasticity of supply
is estimated to be zero on impact, gradually increasing to approximately 0.1 after
about a year. In contrast, in the Euro Area, the elasticity of supply is estimated at
around 0.2.21 However, in absolute terms, the ability to expand supply in the United
States surpasses that of the Euro Area in the long run, as total supply is larger (see
Table C4). This difference in timing can be attributed to the different composition
of supply. In the United States, supply adjustments occur mainly through domestic
production, which requires more time to respond, whereas in the Euro Area, supply is
primarily driven by imports, which can adjust more quickly. Indeed, when we replace
total supply with domestic production for the United States, and net imports for
the Euro Area we find very similar responses. Furthermore, in line with this trade
channel, we find that the euro depreciates (see Figure H39).
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Figure 6: Elasticities of demand and supply.

Notes: Impulse responses of gas demand and supply to a gas demand shock (left
panel) and a gas supply shock (right panel). The black solid lines with blue shaded
confidence bands represent the Euro Area, while the orange solid lines with dashed
and shaded orange confidence bands represent the United States.

20The F-statistics for the four instruments that we construct are as follows: for European supply,
the F-statistic is 16.74 and the robust F-statistic is 10.90; for European demand, the F-statistic is
30.13 and the robust F-statistic is 12.56; for U.S. supply, the F-statistic is 11.33 and the robust
F-statistic is 22.25; and for U.S. demand, the F-statistic is 10.00 and the robust F-statistic is 11.04.
These values indicate that the instruments are sufficiently strong and do not raise concerns about
weak identification (see, e.g., Montiel-Olea et al., 2016).

21Following the standard convention in this literature, we define these elasticities as the percent-
age change in quantity resulting from a 1% increase in price. However, note that all the IRFs are
normalized to a 10% increase in gas price.
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We estimate that the elasticity of consumption in the Euro Area is zero on im-
pact, with adjustments of up to -0.05 only after more than a year. In contrast,
consumption in the United States adjusts more rapidly, reaching a peak elasticity of
approximately -0.05 after six months. This discrepancy in the timing of adjustments
can be attributed to differences in gas demand elasticity across sectors, as well as
variations in the sectoral composition of gas usage between the two regions.

The existing literature suggests that the power sector demonstrates relatively
high short-run price elasticity compared to other sectors. This is primarily due to the
ability of dual- and multi-fuel power plants to rapidly switch between energy sources
in response to price changes (Pettersson et al., 2012). In contrast, the residential
sector, while generally found to be the most responsive to price fluctuations—based
on end-user rather than spot prices—tends to adjust more slowly. The manufac-
turing sector, on the other hand, displays the lowest degree of price elasticity.22 In
the United States, power generation accounts for the largest share of gas consump-
tion (see Figure C20), making interfuel substitution a major driver of aggregate
gas demand adjustments. To verify this, we estimate an alternative specification in
which total gas demand is replaced with gas and oil demand from the power sector.
The impulse response functions presented in Figure H40 confirm significant interfuel
substitution in the United States following a gas demand shock. In contrast, gas
consumption in the Euro Area is primarily concentrated in the residential sector,
with the highly inelastic industrial sector as the second-largest consumer.

Differences in taxation regimes also help explain the disparities in the gas demand
elasticities that we estimate. In the United States, taxes account for a relatively small
portion of gas prices, whereas in the Euro Area, they represent a significant share.
A substantial portion of these taxes consists of specific (quantity-based) levies, such
as excise duties, which constitute the largest component of gas taxation (European
Commission, 2017). Additionally, carbon pricing mechanisms, which impose a per-
unit tax on emissions, play a relatively minor role in shaping gas prices in the United
States (OECD, 2019). The greater prevalence of specific taxes in the Euro Area
partly insulates end-users from fluctuations in spot prices, thereby further dampen-
ing demand responsiveness to price shocks.

Inventories, volatility and uncertainty channel. As shown in the top-left panel
of Figure 7, a gas demand shock leads to a significant decline in gas inventories in both
regions. This response is more pronounced in the United States, both in percentage

22Asche et al. (2008) estimate an elasticity of -0.23 for residential gas demand for a panel of
European countries, while Auffhammer and Rubin (2018) find elasticities between -0.17 and -0.23
for the residential sector in California. For the power generation sector, Serletis et al. (2010)
estimate a value of -0.14 using U.S. data. Finally, Andersen et al. (2011) estimate an average own-
price elasticity of -0.1 for industrial gas consumption for a different panel of European countries.
However, except for Auffhammer and Rubin (2018) that use monthly data, these estimates are based
on annual data, which reflects a different adjustment timeline than our analysis. Additionally,
the gas prices used in these studies are end-user prices rather than spot prices, which are the
prices residential consumers are more directly responsive to. Individual contracts and government
regulations can delay the transmission of spot price fluctuations to end consumers (Baget et al.,
2024).
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terms and absolute magnitude (see Table C4 for magnitudes), reflecting the region’s
greater capacity to absorb such shocks. In contrast, following a gas supply shock
(top-right panel), gas inventories show a significantly weaker response, particularly in
the Euro Area, where they even exhibit a slight long-run increase. This asymmetry
can be explained by two key factors.

First, by construction, gas demand shocks primarily occur during winter, when
gas inventories are deliberately accumulated to accommodate seasonal fluctuations
in demand. In contrast, supply shocks can occur at any time of the year, meaning
that inventories are not necessarily positioned to absorb these disruptions effectively
(European Council, 2022).

Second, we find evidence suggestive of an expectations-driven mechanism. When
a supply disruption occurs, any expectation that future gas demand will exceed
supply leads to an increase in demand for inventories and a rise in the real price
of gas. This effect may stem for example from revised expectations about market
fundamentals, anticipation of other participants’ actions, or precautionary motives.
As a result, inventories do not decline as they do in the case of a demand shock.
This finding aligns with the evidence documented by Kilian and Murphy (2014) in
the crude oil market. Indeed, the type of supply news we consider, particularly in
the Euro Area where we look at disruptions to imports, is consistent with increased
uncertainty about future availability, leading to expectations of shortages and rising
prices.23 Supporting this interpretation, we find that gas supply shocks in the Euro
Area are associated with a rise in financial volatility, whereas demand shocks do not
exhibit this effect.24 Consequently, gas inventories tend to increase in the long run,
reflecting strategic inventory adjustments in response to anticipated price pressures
(top-right panel of Figure 7). Similarly, Känzig (2021a) documents an increase in
crude oil inventories following a negative supply news shock but finds no significant
impact on financial volatility. This discrepancy can be attributed to the nature
of the news analyzed in his study, which does not generate heightened uncertainty
but instead stabilizes expectations regarding future supply around the quantities
announced by OPEC.

23Chiţu et al. (2024) document increased speculation on gas prices, particularly in Europe fol-
lowing the invasion of Ukraine

24This result can be seen more clearly (but is not statistically any different) when using the
informationally-robust version of the supply instruments (see Figure I45).
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Figure 7: Impact on gas inventories and financial volatility.

Gas price shock persistence. Figure 8 illustrates the dynamics of the spot price
following a one-time 10% increase. The results indicate that, in the United States,
both demand and supply shocks exhibit lower persistence compared to the Euro Area.
The degree of persistence reflects the interplay between adjustments in gas inventories
and demand responses. As previously shown, gas inventories respond more strongly
to offset demand shocks, with a larger adjustment observed in the United States
than in the Euro Area. Moreover, gas demand in the United States declines earlier
following a supply shock, whereas in the Euro Area, the adjustment occurs only
after several months. As a result, in the Euro Area—particularly in response to
supply shocks—the spot price remains elevated for a more prolonged period. This
highlights the region’s greater vulnerability to supply disruptions: inventories remain
unresponsive due to increased precautionary demand amid heightened uncertainty,
while gas demand adjusts slowly, limiting the system’s capacity to absorb shocks
effectively.
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Figure 8: Persistence of shocks on spot price.

Gas and oil markets interrelation. Figure 9 compares how real gas and oil prices
respond to shocks in the oil and gas markets respectively.Given their substitutability,
shocks to one commodity influence the other. However, this substitution is imperfect:
oil prices react more mutedly but significantly to gas price shocks, while gas prices
respond more strongly to oil price shocks than vice-versa. As the oil market is more
globalized, an increase in domestic gas demand has a milder impact on oil prices.25

In the Euro Area, gas price changes pass through to oil prices by approximately 25%
at peak, with slightly lower impact in the case of supply shocks. Conversely, the
pass-through from oil prices to gas prices is significantly stronger, reaching near full
pass-through at peak. In the United States, by contrast, pass-through effects are
generally weaker for both gas and oil.

Recent evidence suggests that as the LNG market has become more integrated,
European and Asian gas prices have become more closely linked, whereas the North
American market remains only partially integrated.26 (Albrizio et al., 2023). As
a result, when a demand shock raises gas prices in the Euro Area, prices in Asia
and other LNG-importing countries also increase, prompting interfuel substitution
in these regions. This, in turn, generates a larger fluctuation in the global price of
oil compared to a demand shock originating in the United States.

25Note, for example, that the dynamics of the Brent (reference for Euro Area) and WTI (reference
for United States) crude oil prices are very similar.

26Infrastructure constraints, particularly the limited capacity of LNG export terminals, restrict
the volume of gas that can be shipped abroad.
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Figure 9: Interrelation of Gas and Oil markets.

Notes: Responses of real gas and oil prices to a 10% increase in their respective
prices. The left panel shows the responses to gas demand shocks in the Euro Area
(in black) and the United States (in orange). The central panel details the responses
to gas supply shocks, while the right panel examines responses to oil price shocks as
identified in Känzig (2021a). The oil supply shocks series is displayed in Figure C.6.

Some previous studies have explored the relationship between crude oil and nat-
ural gas markets, particularly in the U.S. context. Some of these studies find no sig-
nificant long-run relationship between the prices of these commodities (Bachmeier &
Griffin, 2006), while others focus primarily on the influence of oil on the gas market.
For instance, Jadidzadeh and Serletis (2017) extend the model of Kilian (2009) to
incorporate the real price of natural gas, which they assume to be predetermined
relative to the oil market. Their findings suggest that approximately 45% of the
variation in the real price of natural gas can be attributed to structural supply and
aggregate demand shocks in the global crude oil market, whereas shocks within the
natural gas market explain about 55% of the long-run variability in its real price.
We find that although the impact of gas shocks on the oil market is limited, it is
significant, particularly in the Euro Area.

Macroeconomic impact. Figure 10 illustrates the impact of gas price shocks on
headline inflation and industrial production. In the Euro Area, both demand and
supply shocks are largely inflationary, while real effects are limited, though more
pronounced in the case of a supply shock. In contrast, in the United States, supply
shocks have no significant impact, whereas gas demand shocks lead to peak increases
of approximately 0.3% in industrial production and 0.2% in inflation, following a 10%
increase in the real price of gas. The increase in industrial production in the United
States is likely driven by higher activity in energy-related sectors, reflecting the rise
in domestic gas production previously discussed.27 In the Euro Area, demand shocks
result in a persistent inflationary pass-through, reaching approximately 2.5% after
more than a year. Supply shocks exhibit even larger effects, with inflation peaking
at around 3%. These inflationary effects largely mirror spot price dynamics, which

27The energy sector is comparatively much larger in the United States, where it accounted for
5.2% of total employment in 2023 (U.S. Department of Energy, 2024).
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show more persistence in the Euro Area—particularly for supply shocks—than in the
United States, where only demand shocks have a lasting impact (see again Figure
8).
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Figure 10: Impact on macroeconomic variables

A notable finding is the strong inflationary effect of gas supply shocks in the
Euro Area, contrasted with their muted negative impact on industrial production.
This result aligns with recent studies suggesting that the economic consequences of
the Russian-Ukrainian crisis would be limited (Bachmann et al., 2022; Gunnella et
al., 2022; Di Bella et al., 2024). We also find that gas supply shocks have only a
modest effect on aggregate spending (see Figure H.4). However, since much of the
discussion around the impact of Russian gas supply disruptions has focused on Ger-
many in particular (Bundesbank, 2022; Sinn, 2022; Moll et al., 2023), we estimate a
Germany-specific version of our baseline model, augmented with national expendi-
ture variables (see Figure H41). The results indicate that while the direction of the
responses is consistent with those observed for the Euro Area as a whole, the real
effects are more pronounced in Germany. We find that, while investment declines,
national expenditure remains relatively stable, suggesting that the contraction in
output is primarily driven by reduced investment alongside higher production costs.
These results should be interpreted with caution, however, as national expenditure
data are only available at quarterly frequency and have been interpolated to monthly
values. Nonetheless, the more pronounced impact on production may help explain
the relatively slower post-pandemic recovery in German output.

While substitution in demand can help explain the relatively muted impact of gas
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supply shocks on aggregate production, and heightened volatility may contribute to
increased inflationary persistence (Boeck et al., 2023), these factors alone do not fully
account for the transmission of gas price shocks to broader inflation dynamics or their
heterogeneous effects across sectors. To shed light on these transmission channels,
the next subsection presents a sectoral analysis. We briefly preview some of the key
findings here to contextualize the aggregate results. One prominent channel driving
inflation in the Euro Area is the pass-through from gas prices to electricity prices.
Our results suggest an almost one-to-one pass-through, consistent with the notion
that the merit order principle in the European electricity market amplifies upstream
energy price shocks (Baget et al., 2024). This transmission channel is illustrated in
Figure 11. Another factor that would contribute to the limited real effects and the
strong inflationary response is market power. If firms have pricing power, they can
pass cost increases downstream, raising prices quickly without significantly reducing
output. This effect is stronger to the extent that demand is inelastic. Figure H42
illustrates the response of the producer price index to a gas supply shock, demon-
strating that a significant share of cost increases is transmitted through the supply
chain. Similarly, Figure 10 shows that a considerable portion of these cost increases
is immediately passed on to consumers. Moreover, consumer prices remain elevated
even after intermediate goods prices begin to decline, as indicated by the greater
persistence of the HICP impulse response functions compared to those of the PPI.
Importantly, The inverted-U shape of price responses further indicates the presence
of indirect effects (see Figures 11, H42, and 12). This interpretation suggests that
only sectors facing major cost increases from rising gas prices, without the ability
to fully pass on these costs in the short-term, experience significant output declines.
Indeed, we find that the negative impact on aggregate production is largely driven
by industries such as electricity, gas, steam, and chemicals, where gas is a major
input. In contrast, most other sectors exhibit only small or statistically insignificant
effects (see Figure 13).

4.1 Sectoral effects of a gas supply shock in the EA

In this section, we provide a detailed sectoral analysis of the effects of a gas
supply shock in the Euro Area. The Russia-Ukraine crisis has sparked extensive
debate over the region’s vulnerability to energy supply disruptions, particularly due
to its reliance on Russian gas (Draghi, 2024). This study seeks to isolate the spe-
cific impacts of such shocks on the Euro Area’s economic dynamics, first examining
their transmission to power and utility prices before assessing their broader effects
on sectoral prices and output.

Transmission to broader energy prices. We first examine the transmission to
gas and power prices, shown in Figure 11. This is obtained by expanding the base-
line specification with the electricity, gas and fuel prices of interest. The response
of the electricity spot price mirrors that of the gas spot price (see Figure 8), with a
near-full pass-through on impact. This relationship can be attributed to the merit-
order principle and marginal electricity pricing, which dictate that when natural gas
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is the most expensive power source in use, it sets the price for electricity production
(Baget et al., 2024; Segarra et al., 2024). Both households and businesses experience
increases in gas and electricity prices; however, firms generally face more substantial
price hikes due to their direct exposure to market rates and the relative absence of
protective measures available to households (the effects on PPI are stronger that the
ones on HICP). Government interventions, primarily aimed at shielding consumers
(Sgaravatti et al., 2023), mitigate the impact on household energy bills, while busi-
nesses absorb the higher costs. We find that consumer prices for gas and electricity,
which are largely composed of utility costs, exhibit similar pass-through dynamics,
with gas experiencing a slightly stronger impact, peaking at approximately 12% after
12 months. The inverted U-shape of these responses highlights the gradual adjust-
ment of these prices, shaped by contractual rigidities in both the wholesale (Ason,
2022) and retail sectors (Baget et al., 2024). These rigidities delay the immediate
pass-through of cost changes, leading to a slower initial response and a more gradual
return to equilibrium. This phenomenon aligns with a broader literature explaining
price stickiness in spot transactions, where mechanisms such as menu costs, infor-
mation imperfections, and long-term agreements prevent quick price adjustments
despite changes in market-clearing prices (e.g. Rotemberg, 1982; Mankiw, 1985;
Borenstein and Shepard, 2002). Finally, fuel consumer prices show a pass-through of
around 10% on impact. Fuel prices, particularly for transportation, are more directly
linked to fluctuations in wholesale energy markets, especially crude oil and refined
petroleum products. Retail fuel prices tend to adjust rapidly to changes in spot
market prices, leading to a faster pass-through effect (see for example Meyler, 2009,
who finds that oil price shocks in the Euro Area pass through very rapidly to con-
sumer fuel prices, with 90% of price changes transmitted within three to six weeks).
Conversely, the gas and power sectors exhibit a delayed and gradual price adjust-
ment due to long-term contracting, regulatory frameworks, and less direct exposure
to spot market fluctuations.
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Figure 11: Impulse responses to a gas supply shock.

Notes: EA: Impulse responses to a gas supply shock in the Euro Area on electricity
prices, gas prices and fuel prices.

Sectoral effects on inflation. Figure 12 presents broader responses of consumer
prices, including core inflation and a selection of goods and services (2-digit ECOICOP
sectors) that enter the headline inflation index. Core inflation remains unaffected ini-
tially but gradually increases, reaching its peak after 20 months with a pass-through
of approximately 1%—about half of the headline inflation peak depicted in Figure
10. This lagged response indicates indirect effects and gradual price adjustments,
suggesting that the impact on headline inflation extends beyond the direct effect of
energy prices.

The sectoral analysis reveals that while gas supply shocks generally lead to infla-
tionary pressures across most sectors, the impact varies significantly. Goods, such as
food and clothing, display an inverted U-shaped response, characterized by an initial
increase followed by a gradual decline. The impact tends to be stronger compared to
services, such as education, healthcare, and, to some extent, restaurants and hotels.
In contrast, the effects on services are generally more subdued and emerge gradually
over several months.

The clothing sector is particularly sensitive to gas price shocks because energy is
one of the main cost factors in the textile industry. Moreover, since synthetic fibers
like polyester are derived from petrochemicals, their production costs are directly
influenced by fossil fuel prices, including natural gas (Hasanbeigi & Price, 2012).
Additionally, energy-intensive processes such as dyeing, washing, and finishing con-
tribute to higher operational costs, which are rapidly reflected in retail prices. This
explains the significant effect on impact.

Overall, two primary mechanisms account for these sectoral impacts. First, direct
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effects occur in sectors where energy constitutes a significant cost factor, such as
clothing and transport (see Figure 11, Fuel HICP), where the impact of higher gas
prices is felt quickly. Second, lagged effects occur in sectors where indirect effects play
a role. For example, natural gas is used as a key input in fertilizer production, which
in turn raises input costs in the food sector (American Gas Association, 2023). This
results in a more gradual price adjustment. Finally, service sectors tend to experience
only mild effects after an extended period, driven primarily by broader inflationary
pressures.
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Figure 12: EA: Responses of core inflation and HICP 2-digit sectors to
a gas supply shock.

Sectoral effects on output. In Figure 10, we demonstrated that the macroe-
conomic impact of gas supply shocks is primarily inflationary, with effects on real
economic activity limited to the first months. Figure 13 provides a more detailed
analysis of how different sub-sectors of industrial production are impacted, ordered
by value added. The Electricity, Gas, and Steam sector, along with the Machinery
and the Vehicles sector, are the main drivers of the immediate aggregate impact,
while industries such as chemicals and paper experience lagged effects. The nega-
tive response in the Electricity, Gas, and Steam sector, the largest in terms of value
added, can be attributed to the central role of natural gas as a key input, which di-
rectly transmits gas price shocks to production costs.28 Within manufacturing, Level
2 sub-sectors are impacted unevenly, with gas-intensive industries, such as chemicals
and paper, experiencing lagged but significant negative responses, while others, such
as fabricated metals and textiles, show no substantial impact. When considered
alongside the results on sectoral HICP, the responses reflect the classic dynamics of
cost-push shocks in energy-dependent sectors. Output typically exhibits a U-shaped

28See Gunnella et al. (2022) for sectoral gas intensity statistics in the EA.
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or inverted J-shaped trajectory, characterized by an initial decline followed by a
gradual recovery. In contrast, inflation responses follow an inverted U-shaped pat-
tern, driven by higher production costs being passed on to consumers. Inflation rises
sharply at first, peaks, and then gradually declines over time as the shock dissipates.
Another characteristic of these types of shocks is the sectoral heterogeneity of their
impacts (Davis & Haltiwanger, 2001), which is also evident in our findings. However,
not all sectors are significantly affected, which explains the limited aggregate effect
on production.
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Figure 13: Impulse responses of IP sectors to a gas supply shock.

Notes: EA: Impulse responses to a gas supply shock in the Euro Area on selected sub-
sectors, ordered by value added. Electricity, gas, steam and air conditioning supply
represents 10.0% of total industrial production, measured by value added; Manufac-
ture of machinery and equipment 9.8%; Manufacture of motor vehicles, trailers and
semi-trailers 9.5%; Manufacture of food products 8.6%; Manufacture of fabricated
metal products 8.0%; Manufacture of chemicals and chemical products 6.1%; Manu-
facture of paper and paper products 2.1%; Manufacture of textiles 1.0% (Eurostat,
2024).a

aThe figures refer to 2017, the latest year for which the value added for Europe is available for
all sectors.

Discussion. The analysis presented in this section reveals significant regional differ-
ences in the effects and transmission of gas price shocks between the Euro Area and
the United States, driven by structural differences in supply composition, demand
elasticities, and transmission mechanisms.

The timing and magnitude of supply adjustments differ markedly between the
two regions. In the United States, where domestic production is the primary driver
of supply, we estimate a short-run elasticity of zero that gradually increases over
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time, reaching approximately 0.1 after one year. In contrast, in the Euro Area,
where supply is largely dependent on imports, adjustments occur more quickly, re-
sulting in a higher short-run supply elasticity of approximately 0.2. However, this
reliance on imports inherently limits the region’s ability to mitigate supply shocks
such as import disruptions. In the Euro Area, gas demand is inelastic on impact
and adjusts only after several months. This rigidity stems at least in part from the
composition of demand, with a larger share of gas consumption in the Euro Area
concentrated in the residential and industrial sectors, where price pass-throughs are
slower and consumption is less responsive. In contrast, in the United States, power
generation accounts for a larger share of gas consumption, allowing for greater in-
terfuel substitution and a faster demand adjustment, with an estimated elasticity of
approximately -0.05 after a couple of months.

The inflationary impact of gas price shocks is more pronounced in the Euro Area
than in the United States. Demand shocks in the Euro Area lead to a persistent
pass-through to headline inflation, reaching approximately 2.5% after more than a
year, while supply shocks exhibit even greater persistence, with inflation peaking
at around 3%. In contrast, in the United States, supply shocks have no significant
effect on inflation, while demand shocks result in a smaller and less persistent in-
crease, peaking at approximately 2% within six months before quickly declining.
These inflationary dynamics largely reflect spot price movements, which are shaped
by adjustments in demand and gas inventories. In the Euro Area, in addition to
the slower adjustment of demand, gas inventories do not offset price increases fol-
lowing gas supply shocks but instead rise in the long run, accompanied by increased
financial volatility. This suggests an expectation-driven mechanism, where height-
ened uncertainty prompts stockpiling and precautionary demand, further amplifying
inflationary pressures. Moreover, the near one-to-one pass-through of gas prices to
electricity prices, driven by the merit-order principle, reinforces the persistence of
inflation.

Aggregate real effects are limited in both regions. In the United States, gas
demand shocks lead to a temporary increase in industrial production, as a result
of heightened activity in energy production. In contrast, in the Euro Area, supply
shocks have a negative but muted impact on industrial production, with significant
sectoral heterogeneity. Sectoral analysis indicates that industries heavily reliant on
gas—such as the electricity, gas, and steam sector, as well as chemicals—experience
the largest negative output effects. However, over time industries are able to pass
cost increases downstream, limiting the aggregate impact on industrial production.
Instead, inflationary pressures are widespread but stronger in goods as opposed to
services, with consumer price increases reaching up to 3% in sectors such as clothing
and food following a 10% rise in natural gas prices.

4.2 Contributions to inflation surge

We now undertake a more detailed analysis of the impact of gas shocks on Eu-
ropean inflation, comparing this with the influence of other factors that have been
central to the macroeconomic debate surrounding the inflation surge that began in
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2021. Specifically, we consider supply chain bottlenecks, which emerged prominently
during the COVID-19 pandemic and were exacerbated by subsequent disruptions;
oil price shocks, driven by global supply imbalances and heightened geopolitical ten-
sions; and monetary policy shocks, as central banks responded to rising inflationary
pressures with sharp shifts in interest rates. The analysis presented in this section
aims to disentangle the relative contributions of these factors to the inflationary
environment during this period.

We therefore estimate a small-scale VAR model that includes the Global Supply
Chain Pressure Index (GSCPI), the real price of gas, the real price of oil, core in-
flation, and the 1-year ECB rate. Following the approach of Benigno et al. (2022),
we identify the effects of supply chain bottleneck shocks using short-run restrictions,
assuming that the GSCPI is predetermined with respect to the other variables. Oil
price shocks and monetary policy shocks are identified using external instruments,
following Känzig (2021a) and Ricco et al. (2024), respectively. Further details on
the identification of these shocks are provided in Appendix B. The residuals of in-
flation are left unidentified and therefore capture unexplained variation in prices
attributable to other factors, such as unmodeled aggregate demand or the impact of
food prices (ECB Blog, 2023).

Before turning to the impacts on inflation, we first evaluate the contribution of
our gas shocks the the real gas price series. Figure 14 shows the cumulative historical
contribution of gas shocks to the real price of gas together with the observed realized
real gas price for the period 2004M1-2024M10. This is obtained by combining both
our demand and supply instruments. We can see that our identified shocks have
contributed substantially to the historical variation of the price of gas. For example,
when in January 2009 Russia halted gas deliveries to Ukraine for 13 days following
a Gazprom and Naftogaz dispute over the latter’s accumulating debts, prices hiked.
Prices then quickly returned to the usual levels after the dispute was resolved on Jan-
uary 18 when Russian Prime Minister Vladimir Putin and his Ukrainian counterpart
Yulia Tymoshenko negotiated a new contract. In addition, unexpected temperature
swings contributed to temporary spikes in the price of gas, as during the March
2013 storm in the West of Europe, or the cold February of 2018, which caused a
very large hike in the price of gas. However, gas price shocks would have led to a
higher gas price during the 2015-2017 period but this was moderated by declining
oil prices following OPEC announcements, as shown in Känzig (2021a). Similarly,
the record-low prices of 2020 reflected broader pandemic-related disruptions rather
than solely gas-specific shocks, as further discussed below.
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Figure 14: EA: Historical decomposition of the real price of gas

Notes: The figure illustrates the estimated contributions of gas shocks to the real price
of gas, alongside the realized gas price series (expressed as percent deviations from the
mean). Both demand and supply instruments are used. Vertical dashed bars mark
significant events in the gas markets: the Russian halt of all gas deliveries to Ukraine
for 13 days in 2009M1; an abnormally cold winter in Europe in 2010M12; a late snow
event in Western Europe in 2013M3; a cold spell in 2018M2; Poland’s imposition
of fines on Gazprom in 2020M8; Putin’s announcement of gas supply increases in
2021M10; supply fears in 2022M3 following the invasion of Ukraine; and the warmest
October on record in 2023.

Having evaluated the extent to which our identified shocks account for the vari-
ability in the real gas price series, we now focus on the primary objective of this
section: quantifying the contributions of inflationary drivers to price dynamics. To
provide a clearer understanding of inflation dynamics over time, we first categorize
the period from February 2020 to October 2024 into three distinct chronological
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phases:29

• Phase I: COVID-19 Pandemic (February 2020 to December 2020): Inflation
declines sharply as the pandemic disrupts economic activity.

• Phase II: Inflation Surge (January 2021 to March 2023): Inflation accelerates
significantly, reaching historically high levels.

• Phase III: Disinflation (April 2023 onwards): Inflation starts to decline, going
back to target.

Figure 15 presents the historical decompositions derived from the VAR model and
compares them to the realized series of inflation. Historical decompositions provide
a quantitative assessment of how much each series of structural shocks contributes
to the observed fluctuations in the variables included in the VAR model (see Ap-
pendix A.2 for additional technical details). In this context, these decompositions
help identify the relative importance of different inflation drivers over time, offering
valuable insights into their changing relevance during the analyzed period.

First, we observe that the sum of the four identified shocks—out of the five
variables included—(dashed line) closely matches the realized inflation series. This
indicates that the residual unexplained variation in inflation is small, suggesting
that the identified shocks represented the most significant drivers of inflation over the
considered sample. Furthermore, this result confirms that the quality of the historical
decomposition approximation is adequate and effectively captures the recent rise in
inflation.

At the onset of the COVID-19 pandemic, oil and gas price shocks had a significant
and comparable impact on inflation, as pandemic-related lock-downs triggered a
collapse in economic activity and global energy demand. The role of energy shocks,
remained critical during the inflation surge observed in Phase II. Gas price shocks,
in particular, emerged as the dominant driver of core consumer prices, playing a key
role in the rapid price increases. This impact, was further exacerbated by the adverse
supply shocks following the invasion of Ukraine. In addition to energy shocks, supply
chain bottlenecks became a critical inflationary factor. With the post pandemic
reopening, the economy was exposed to severe disruptions, including shortages of
semiconductors and memory chips, the global misallocation of shipping containers,
and port delays due to pandemic-related restrictions (Stiglitz & Regmi, 2023). These
supply chain bottlenecks, characterized by lagged and persistent effects, continued to
influence inflation well into late 2023, as also found by De Santis (2024). Throughout
the period of elevated inflation, monetary policy responded with a sharp interest
rate hikes. However, we find that its effectiveness in mitigating rising prices has
been limited. Finally, Phase III was marked by a gradual normalization of inflation
driven by the easing of energy price pressures and the resolution of pandemic-induced
supply chain interruptions.

We now quantify these qualitative observations and assess the contribution of
each historical decomposition to the series of inflation. To this aim, we introduce

29See, for example, Ascari et al. (2023) for a similar categorization.
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Figure 15: Historical decompositions of YoY, MoM inflation and price
level, selected sample.

Notes: The top panel shows the contributions of supply chain bottlenecks, gas price,
oil price, and monetary policy shocks on the realized series of YoY inflation, relative
to the unconditional mean (horizontal line). The central panel illustrates the contri-
butions on MoM inflation. The bottom panel shows the implied contributions on the
price level. Throughout all panels, the dashed line represents the total contribution
of all shocks considered.
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a metric that quantifies how much a series of shocks has contributed in percentage
terms to the variation of inflation between two time periods. We denote

ŷt =
t−1∑
s=0

Θswt−s

the approximation implied by equation A.2. This allows us to define

ŷ
(j)
kt =

t−1∑
s=0

θkj,swt−s (4.2.1)

the historical decomposition representing the contribution of the series of the jth

structural shocks to the realization of the kth variable at time t. By construction it
holds that

ŷkt =
K∑
j=1

ŷ
(j)
kt

Therefore, to quantify how much the series of a the jth shock has contributed in
percentage terms to the variation of the kth variable between time q and time r, we
can compute the quantity ∑r

t=q |ŷ
(j)
kt |∑K

k=1

∑r
t=q |ŷ

(j)
kt |

(4.2.2)

It is important to note that this measure does not account for the sign of the historical
decomposition contributions and should be interpreted accordingly. Specifically, it
provides only a quantitative assessment of the extent to which each series of shocks
has influenced the inflation series. Table 1 quantifies the contributions of each series
of shocks to inflation by applying the proposed metric to different time periods.

Shock contribution SCB Gasp Oilp MP Residual

Pre-COVID
2019M01

6% 15% 17% 8% 54%2020M01

Phase I
2020M02

8% 22% 24% 8% 38%2020M12

Phase II
2021M01

18% 33% 21% 12% 16%2023M03

Phase III
2023M04

24% 19% 30% 14% 13%
2024M10

All phases
2020M02

18% 27% 24% 12% 19%2024M10

Table 1: Percentage contributions of the structural shocks to the realized
series of inflation.

In the pre-COVID period (January 2019-January 2020) inflation was relatively
low, supported by low demand and strong supply (Binici et al., 2022). In this en-
vironment of price stability energy price shocks played a relatively modest role in
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inflation dynamics, with gas and oil prices explaining 15% and 17% of inflation varia-
tion, respectively. During the COVID-19 crisis (Phase I), energy price shocks gained
relevance, while supply chain bottlenecks had a minimal influence. Notably, in this
period the residual component contributed a substantial share of inflation volatility,
possibly reflecting demand forces not captured in our analysis. In Phase II, marked
by the Russian invasion of Ukraine, gas price shocks emerged as the primary driver
of inflation, primarily due to gas supply disruptions. Gas price shocks explained
33% of the overall inflation variation, significantly outpacing the contribution of oil
price shocks at 21%. Concurrently, the significance of supply chain bottleneck shocks
increased to 18%, underscoring the growing relevance of the disruptions originated
during the pandemic. The disinflation period (Phase III) saw a marked moderation
in the impact of energy prices. The contribution of gas price shocks declined to 19%,
reflecting the normalization of gas markets following the unprecedented price surges
of 2021 and 2022. In contrast, supply chain bottlenecks persisted as a significant
driver of inflation, reflecting their long-lasting effects.

Overall, we have that energy shocks have consistently been important drivers of
inflation from January 2020 onwards (explaining half of the variation in inflation),
overshadowing the effects of monetary policy, which appeared relatively subdued
despite a marked increase in interest rates.

To complement the information provided by the metric in Eq.4.2.2, we assess
the contribution of each historical decomposition on the price level, via the measure
proposed by Kilian and Lütkepohl (2017), chapter 4. We measure the cumulative
change in ykt between time q and r attributed to the jth structural shock as follows:

ŷ
(j)
kr − ŷ

(j)
kq (4.2.3)

where ŷ
(j)
kt denote the cumulative contribution of shock j to variable ykt at time t,

in line with Eq.4.2.1. In addition to the previously proposed measure, this metric
informs on the sign of the cumulative change in the variable of interest given by the
jth shock.

Table 2 reports this metric for the three time periods of interest. In Phase I,
the price level remained relatively unchanged. The initial negative effects at the
onset of the pandemic, driven by a slowdown in economic activity, were offset by
the positive effects that followed the reopening of the economy, as illustrated in
Figure 15. Additionally, the residual term contributed to a reduction of 0.8 points,
likely reflecting unmeasured reduction in aggregate demand. In Phase II, gas price
shocks became the major driver of inflation, contributing over 3.8 points to price level
increase. Supply chain bottlenecks and oil price shocks also played substantial roles,
each contributing approximately 2.5 points. Energy price shocks, which collectively
accounted for 50% of the variation in inflation during the surge, led to a cumulative
effect of 6 points on the price level. Lastly, during the disinflation period, while all of
the factors considered moderated, the influence of gas price shocks saw the greatest
reduction.

Our analysis reveals that the surge and subsequent reversal of energy prices,
alongside the persistent effects of supply chain bottlenecks explain the bulk in the
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Shock contribution to the price level
SCB Gasp Oilp MP ResidualDate and price level

Phase I
2020M02 104.63

0.37 -0.06 0.08 0.47 -0.802020M12 104,69

Phase II
2021M01 104.69

2.44 3.83 2.42 1.65 -0.24
2023M03 114.79

Phase III
2023M3 114.79

1.56 0.99 1.64 0.92 0.162024M10 120.06

Table 2: Cumulated contributions of the structural shocks to the realized
series of price levels.

rise and subsequent fall in the Euro Area prices during the last few years. These
results offer valuable insight into the sources of the inflation dynamics, suggesting
that supply-side drivers had been key determinants of the post-pandemic inflation
surge in the Euro Area (Bańbura et al., 2023; De Santis, 2024). Crucially, gas signif-
icantly outpaced the contribution of oil-particularly following the Russian invasion
of Ukraine-accounting for one-third of inflation volatility between January 2021 and
March 2023. Our conclusions align with Casoli et al. (2022), who, adopting an al-
ternative identification strategy based on sign restrictions, find that gas price shocks
have been the major contributing factor to the inflation surge. These findings are
further supported by recent studies investigating the drivers of the inflation surge in
the Euro Area. For example, similarly to Benigno et al. (2022), we show that mainly
accounting for this surge was a combination of energy shocks and supply chain bot-
tlenecks. However, by explicitly disentangling the impact of gas price shocks from
that of oil, we increase the explanatory power of the historical decomposition and
underscore the distinct contribution of gas to inflation volatility. Moreover, in the
same vain of Bańbura et al. (2023) we showcase the importance of supply-side drivers
for the inflation surge, but, in contrast to the their findings, our results suggest that
gas shocks had a greater influence than oil shocks.

5 Conclusions

In this paper we proposed a novel identification strategy to separately identify
demand shocks and supply news shocks to the price of natural gas. Using exogenous
variation in temperatures, we identified a gas demand shock, and using variation in
futures prices around a tight window around gas market-relevant news, we identified
a gas supply news shock. This approach enabled us to estimate gas demand and
supply elasticities for both the United States and the Euro Area. Additionally, we
presented detailed evidence on the macroeconomic and sectoral impacts of gas price
shocks, offering new insights into their transmission mechanisms and effects.

Our analysis reveals that gas shocks have significant macroeconomic effects in
both the Euro Area and the United States, with notable regional differences driven
by structural disparities in supply composition, demand elasticity, and market dy-
namics. In the United States, greater flexibility in fuel substitution allows for a
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more responsive demand adjustment, whereas in the Euro Area, demand adjusts
more gradually, contributing to the persistence of inflationary effects. Inflationary
pressures in the Euro Area are further amplified by an expectation-driven mechanism
linked to uncertainty, as reflected in increased inventory accumulation and heightened
financial volatility following supply shocks. Although the aggregate real effects of
gas price shocks remain limited, their impact varies across sectors. Energy-intensive
industries are most affected by supply shocks, but cost increases are largely passed
downstream over time, mitigating direct output losses while sustaining inflationary
pressures, which are more pronounced for goods than for services.

This analysis highlights important policy considerations. First, strengthening
energy security remains a key priority for the Euro Area. In the short term, fos-
tering partnerships with reliable and diverse trade partners and supporting joint
procurement initiatives can enhance resilience. Additionally, diversifying suppliers
and expanding strategic reserves would further improve the region’s ability to offset
both supply and demand shocks. Reforming the electricity market in the Euro Area
also warrants attention, as adjustments that reduce the disproportionate influence
of marginal pricing by the most expensive energy sources could help mitigate overall
energy price volatility. Finally, our relatively low estimates of demand elasticity in
both the Euro Area and the United States have implications for the transition to
renewable energy, as price mechanisms alone may be insufficient to reduce reliance
on natural gas.
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Appendix A Econometric models

This appendix is mostly based on Kilian and Lütkepohl (2017), chapter 4 for the
frequentist part, and on Giannone et al. (2015) for the Bayesian part. We consider
the structural VAR(p) model

B0yt = B1yt−1 + · · ·+Bpyt−p + wt (A.0.1)

with yt a (K × 1) vector that is taken to have zero mean without loss of generality,
where K is the number of variables included in the VAR, and where wt is assumed to
be white noise. This model is “structural” since the elements of wt are uncorrelated.
Furthermore, is is assumed that the model is driven byK distinct shocks, so that their
variance-covariance matrix Σw is full-rank. However, since B0 and wt are in general
unobserved, to estimate the model we resort to its reduced form representation

yt = B−1
0 B1yt−1 + · · ·+B−1

0 Bpyt−p +B−1
0 wt

= A1yt−1 + · · ·+ Apyt−p + ut,
(A.0.2)

where A1, . . . , Ap, ut can easily be estimated by OLS. Without loss of generality, the
covariance matrix of the structural shocks can be normalized so that E(wtw′

t) ≡
Σw = IK . The key equation that characterizes the model is ut = B−1

0 wt, where the
matrix B−1

0 has to be retrieved. For now, we assume B−1
0 to be known, and our

strategy to recover such matrix will be presented in section A.4.

A.1 Structural Impulse Response Functions

Given B0 and ut, it is straightforward to recover wt, which can be used to compute
the impulse response functions (IRFs), that is, the responses of each element of
yt = (y1t, . . . , yKt)

′ to a one-time impulse in each element of wt = (w1t, . . . , wKt)
′:

∂yt+i
∂w′

t

= Θi, i = 0, 1, 2, . . . , H (A.1.1)

This is a (K ×K) matrix whose elements are given by

θjk,i =
∂yj,t+i
∂wkt

.

In order to recover the IRFs, we first resort to the VAR(1) representation of the
VAR(p) process:

Yt = AYt−1 + Ut, (A.1.2)
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with

Yt ≡

 yt
...

yt−p+1

 A0 ≡


A1 A2 . . . Ap−1 Ap
IK 0 0 0
0 IK 0 0
...

. . .
...

...
0 0 . . . IK 0

 Ut ≡


ut
0
...
0

 .
By recursive substitution, it can be shown that the response of the variable j =
1, . . . , K to a unit shock ukt, i periods in the past, for k = 1, . . . , K is given by
Φi =

[
ϕjk,i

]
≡ JAiJ , where J ≡

[
IK , 0K×K(p−1)

]
is a selector matrix. These are

sometimes called dynamic multipliers of reduced form impulse responses.
Under covariance stationarity of yt, it can be expressed as a weighted average of
current and past shocks (multivariate MA(∞) representation), with weights Φi:

yt =
∞∑
i=0

Φiut−i =
∞∑
i=0

ΦiB
−1
0 B0ut−i =

∞∑
i=0

Θiwt−1, (A.1.3)

where we define Θiwt−i ≡ ΦiB
−1
0 . It follows that

∂yt
∂w′

t−i
=
∂yt+i
∂w′

t

= Θi, i = 0, 1, 2, . . . , H

These structural impulse responses can be obtained simply by post-multiplying Ψi

by B−1
0 .

A.2 Historical Decomposition

Structural impulse responses describe average movements in the data. However,
we are often interested in quantifying how much a given identified structural shock
explains of the historically observed fluctuation of the variables included in the VAR.
For covariance stationary VAR models, it is possible to compute such contributions
of the shocks to the empirical realization of the variables, called historical decompo-
sitions. We can rewrite equation A.1.3 as

yt =
t−1∑
s=0

Θswt−s +
∞∑
s=t

Θswt−s.

Since under covariance stationarity the MA coefficients will die out, it holds that

yt ≈
t−1∑
s=0

Θswt−s. (A.2.1)

This approximation can be computed only from t = p+1 to the end of the available
sample and will be better for the time periods at the end of the sample, with the
quality of the approximation also depending on the persistence of the roots of the
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VAR process.

A.3 Forecast Error Variance Decomposition

Forecast Error Decompositions (FEVDs) are another tool that can help answering
questions like “how much of the Prediction Mean Squared Error (PMSE) - or the
forecast error variance, since the data is mean-zero - is accounted for by each of the
structural shocks?”
The FEVD can be computed simply with the Θi matrices. It can be shown that for
a VAR process the h-step ahead forecast error is

yt+h − yt+h|t =
h−1∑
i=0

Φiut+h−i =
h−1∑
i=0

Θiwt+h−i

Therefore,

MSPE(h) ≡ E
[
(yt+h − yt+h|t)(yt+h − yt+h|t)

′] = h−1∑
i=0

ΘiΘ
′
i

It follows that the contribution of shock j to the MPSE of ykt for k = 1, . . . , K at
horizon h is

MSPEkj (h) = θ2kj,0 + · · ·+ θ2kj,h−1.

By reworking these expressions we get

1 =
MSPEk1(h)

MSPEk(h)
+

MSPEk2(h)

MSPEk(h)
+ · · ·+ MSPEkK(h)

MSPEk(h)
(A.3.1)

where each ratio gives the fraction of the contribution of the jth shock to the
MSPE(h) of variable k, for j = 1, . . . , K.
Finally, for stationary systems, the forecast error variance decomposition converges
to the actual variance decomposition, for h→ ∞.

A.4 Identification

As presented above, in the VAR context the identification problem refers to the
problem of recovering the B−1

0 matrix. We here briefly present the recursive iden-
tification scheme - which we use as a benchmark - and the instrumental variable
approach, our main identification strategy.

The recursive identification scheme. A common approach to solve the identifi-
cation problem is to impose a sufficient number of restrictions to the entries of B0 in
order to recover the unconstrained ones from the estimate of Σ̂u. In particular, it is
customary to assume that the simultaneous relationships between the variables are
acyclic. This assumption imposes that there are no contemporary feedbacks in the
system and that there exists a precise causal ordering of the variables. In practice,

51



this is equivalent to imposing that B0 is lower triangular, given a particular ordering
of the variables. By doing so, B−1

0 can be unambiguously identified through the
Cholesky factorization of Σ̂u and the particular contemporaneous ordering is usually
chosen by relying on prior economic knowledge. This technique has perhaps been
the most popular way to identify a structural VAR models, as the Cholesky fac-
torization of the variance-covariance matrix of reduced-form residuals is an efficient
and straightforwardly implementable way to “orthogonalize” the reduced-form er-
rors, that is, to disentangle wt from the reduced-form shocks ut. However, it must be
stressed that this identification scheme is built upon the a priori imposition of a whole
causal chain with a rigid, recursive causation order, deriving from the computational
restriction imposed by the Cholesky factorization.

Since the Cholesky identification scheme can correctly retrieve the matrix B0

only if the true structure is indeed recursive and the ordering of the variables is
specified correctly, this approach is problematic for a number of reasons. As Kilian
and Lütkepohl (2017) put it, the credibility of an approach that imposes a recursive
causal architecture without any clear order of the variables in mind is undermined in
the first place. Furthermore, this is aggravated by the fact that the number of pos-
sible orderings grows with the factorial of the number of variables, and, finally, even
if all the permutations lead to the same impulse responses, this does not prove that
every identification strategy is bound to lead to the same results. It simply shows
that all recursive identifications provide the same results, but it gives no evidence
that the model should be recursive in the first place. This is why this approach has
inspired a series of critic contributions to the literature that take explicit aim at the
fact that it seems to be built on the (often quite misled) confidence in the data’s abil-
ity to speak for themselves but which in practice relies on a set of assumptions that
are extremely difficult to justify within real-world applications (Cooley & LeRoy,
1985).

Identification via external instrument: proxy-VAR. In recent years, the in-
strumental variables approach typically used in microeconomics has been adapted
to a time series context, leading to an identification method called proxy-VAR. In
a situation where the regression of variable y on variable x presents an endogeneity
problem, we can make use of the exogenous variation that an instrument z provides
to identify the causal impact of x on y, where z is correlated to x (sometimes re-
ferred to as “validity” of the instrument) but not to y|x (sometimes referred to as
“exogeneity” of the instrument or as “exclusion restriction”), so that z affects y only
through x.
In the VAR context, this approach allows to identify only one structural shock, or
rather, at least one instrument is needed to identify each of the structural shocks
to be instrumented for. We denote the column of interest of the B−1

0 matrix as sk,
with k ∈ (1, K), which has dimensions (K × 1), and which represents the effect of
the structural shock of interest, which we denote as wk,t, on all the K variables of
the system. For expository purposes, we here set k = 1 without loss of generality.
Therefore, we have

ut = s′1w1,t
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Further, let zt denote an instrument (or several), which satisfies:

E[ztw1,t] ̸= 0 (A.4.1)

E[ztw2:K,t] = 0 (A.4.2)

Given these moments conditions,30 it can be shown that

s2:K,1 =
[
E[ztu1,t]′E[ztz′t]−1E[ztu1,t]

]−1 E
[
z′tE[ztz′t]−1E[ztu1,t]u2:K,t

]
, (A.4.3)

which in the case of a single instrument (zt scalar), collapses to

s2:K,1 =
E[ztu2:K,t]
E[ztu1,t]

(A.4.4)

Note that the vector s2:K,1 is estimated up to sign and scale, as we have implicitly
assumed above that s1,1 = 1. The sign and scale of s1 are set subject to a normal-
ization Σu = B−1

0 ΩB−1
0

′. It is customary to set Ω = IK so that a unit positive value
of w1,t has a one standard deviation positive effect on y1,t.
s2:K,1 can be estimated via the standard two-stage least square procedure as follows:

1. First stage:

β̂1 =

(
1

T

T∑
t=1

ztz
′
t

)−1(
1

T

T∑
t=1

ztu1,t

)
31

û1,t = β̂′
1zt for t = 1, . . . , T

2. Second stage:

ŝ2:K =

(
1

T

T∑
t=1

û1,tû1,t

)−1(
1

T

T∑
t=1

û1,tu
′
2:K,t

)

Note that when we identify a shock via the proxy-VAR, in general only a column of
B−1

0 is identified, so that it will not be possible to invert this matrix to obtain the
structural shocks via wt = B0ut. However, following Stock and Watson (2018) the
structural shocks can still be recovered as follows:

s′1Σ
−1ut = s′1(B0B

′
0)ut = s′1B

′
0B0B

−1
0 wt = e′1wt = w1,t, where B0s1 = e1.

under the Ω = IK normalization, and where e1 is the first standard basis vector.
To assess the validity of the instruments, a test relying on the F-statistic32 (including
the constant) can be implemented (see Stock and Yogo, 2002).

30We also need E[ztu1,t] full column rank and E[ztz′t] < ∞.
31An intercept is generally also included in this regression.
32In this case the F-statistics takes the form F =

(
∑T

t=1 u2
1,t−

∑T
t=1(u1,t−û1,t)

2)/p∑T
t=1(u1,t−û1,t)2/(T−p)

, where p is the

number of instruments
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In the VAR context, this instrumental variable approach has been used mostly to
identify a monetary policy shock (see for example Gertler and Karadi, 2015; Miranda-
Agrippino, 2016; Nakamura and Steinsson, 2018), but not exclusively (see for exam-
ple Känzig, 2021a for an oil price shock or Känzig, 2021b for a carbon price shock).
The idea is to rely on short-term movements of financial variables around certain
events. By looking at the movements of rates or yields during relatively narrow
windows around policy announcements, it is possible to infer whether the monetary
policy is more expansionary or more contractionary than anticipated. The underlying
assumption is that before the start of the observation window, the market has priced
in expectations of how the policy rate should move, given the state of the economy.
Therefore, if during the window yields move in an unanticipated way, this surprise
is exogenous, an can be used in the proxy-VAR framework. Since the observation
windows are typically tight, this approach is often referred to as “high-frequency”
approach.
As a final note of this section, when in the recursive identification scheme a variable
is ordered first, this is equivalent to assuming that the regression of the other vari-
ables on the first does not present endogeneity problems. In other words, the first
variable does not need to be instrumented for.

A.5 Bayesian estimation

The Bayesian VAR we estimate implements Minnesota and sum-of-coefficients
priors following Bańbura et al. (2007), expanded with dummy-initial-observations
priors (Sims, 1993). Parameter estimation of the SVAR model is performed within
a Bayesian framework in the spirit of Giannone et al. (2015). The priors for the
SVAR coefficients are taken from the Normal-Inverse-Wishart family and are of the
following form:

β|Σ ∼ N(b,Σ⊗ Ω),

Σ ∼ IW(Ψ,d),

where b, Ω, Ψ and d can be expressed as a function of the lower-dimensional vector
of hyper-parameters γ. Here, β is the vector of listed coefficients of the Aj matrices.
This class has two advantages: it includes the priors most commonly used in the
literature and, since the priors are conjugate with respect to the likelihood function,
the marginal likelihood is available in closed form. Giannone et al. (2015) set the
degrees of freedom of the inverse-Wishart distribution to d = n + 2, where n is the
number of variables included in the model, which is the minimum value that guar-
antees the existence of the mean of the IW distribution of Σ, given by Φ

d−n−1
. The

matrix Φ is diagonal with the vector ϕ on the main diagonal.

Giannone et al. (2015) propose to use three priors pertaining to the normal-
inverse-Wishart family. The Minnesota (Doan et al., 1984), formalizes the idea that,
ex ante, all the individual variables are expected to follow random walk processes.
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We specify it as follows. The conditional mean of the prior distribution is given by:

E[(As)ij|Σ] =

{
1 if i = j and s = 1

0 otherwise
,

so that an impact on a given variable only affects that variable at the next period in
time, without affecting any variable at different lags. The conditional covariance of
the prior distribution is given by:

cov[(As)ij, (Ar)kl|Σ] =

{
λ2 1

sα
Σik

ψj/(d−n−1)
if l = j and r = s

0 otherwise
,

where λ is the main hyperparameter and it controls the relative importance of prior
and data (that is, the variance associated to the prior, in other words, the degree of
confidence attributed to the prior). When λ→ 0, no weight is given to the data and
vice versa for λ→ ∞. α is an hyperparameter that controls how fast this covariance
should decrease with the number of lags and ψj is the j

th entry of ψ, which controls
the variance associated to each variable. Some refinements of the Minnesota prior
have been proposed in order to favour unit roots and cointegration, grounded on the
common practices of many applied works. These take the form of additional priors
that try to reduce the importance of the deterministic component of the VAR model.

The sum-of-coefficients prior is based on the idea that a “no-change” forecast is
a good forecast at the beginning of the period. It is implemented by adding at the
beginning of the sample artificial data constructed in the following way:

y+
n×n

= diag

(
ȳ0
µ

)
=


ȳ1
µ

0 · · · 0

0 ȳ2
µ

· · · 0
...

...
. . . 0

0 0 0 ȳn
µ


x+

n×(1+np)
=
[
0

n×1
, y+, · · · , y+

]
,

where ȳj denotes the average of the first p observations for each variable j = 1, · · · , n.
This prior implies that the sum of the coefficients of each variable on its lags is 1
and that the sum of the coefficients of each variable on the other variables’ lags
is 0. It also introduces correlation among the coefficients of the same variable in
that variable’s equation. The hyperparameter µ controls the variance of these prior
beliefs: as µ → ∞, the prior becomes uninformative, while µ → 0 implies the
presence of a unit root in each equation and rules out cointegration.

Since in the limit this prior does not allow for cointegration, the single-unit-
root (also called dummy initial observation) prior can be implemented to push the
variables towards the presence of cointegration. This is designed to remove the
bias of the sum-of-coefficients prior against cointegration, while still addressing the
overfitting of the deterministic component issue. It is implemented by adding one
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artificial data point at the beginning of the sample:

y++

1×n
=
( ȳ0
δ

)′
=
[ ȳ1
δ
, · · · , ȳn

δ

]
x++

1×(1+np)
=
[
1
δ
, y++, · · · , y++

]
,

The hyperparameter δ controls the tightness of the prior implied by this artificial
observation. As δ → ∞, the prior becomes uninformative. As δ → 0, the model
tends to a form in which either all variables are stationary with means equal to the
sample averages of the initial conditions, or there are unit root components without
drift terms.

The three priors illustrated depend on the hyperparameters λ (the tightness of the
Minnesota prior), µ (the tightness of the sum-of-coefficients prior), δ (the tightness of
the single-unit root prior) ψ (which specifies the prior variance associated with each
variable) and α (which relates to the decay of the covariance of coefficients relative
to more lagged variables). We use the following parametrization: λ ∼ Γ with mode
equal to 0.2 and standard deviation equal to 0.4; , µ ∼ Γ with mode equal to 1 and
standard deviation equal to 1; δ ∼ Γ with mode equal to 1 and standard deviation
equal to 1; α ∼ Γ with mode equal to 2 and stadard deviation equal to 0.25. The
hyperprior for the elements in ψ is set to an inverse-Gamma with scale and shape
equal to 0.0004. Note that these are not flat hyperpriors. This guarantees the
tractability of the posterior and it helps to stabilize inference when the marginal
likelihood happens to show little curvature with respect to some hyperparameters.
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Appendix B Identification of additional macroe-

conomic shocks

Supply chain bottleneck (SCB) shocks. The supply chain factors related to
the disruptions induced by COVID-19 lockdowns and subsequent re-openings have
been one of the main drivers of the recent increase in prices. In general, supply-chain
pressures are correlated to higher inflation, and this can happen via several channels,
such as import prices, costs of intermediate inputs, and inflation expectations (Liu
& Nguyen, 2023). However, shocks to SCB have been studied relatively little in the
literature, mainly due to the difficulty of measuring SCB. Some recent papers include
Binici et al. (2022) and Kim et al. (2023), which identify a SCB shock by relying on
sign-restrictions.

We build on to this new strand of literature and identify the supply chain bot-
tlenecks (SCB) shocks by short-term restrictions. We measure SCB via the novel
Global Supply Chain Pressure Index (Benigno et al., 2022), which integrates various
indices of delivery times, backlogs, and inventories to quantify supply chain bot-
tlenecks.33 We argue that this variable is unlikely affected by the other shocks of
the system within the same month (it is a “slow-moving” variable) and that we can
therefore use the standard short-term restrictions / recursive identification scheme
to identify this shock, where GSCPI is ordered first. We are therefore assuming
that other shocks in the system do not impact SCB within the same month. This
is supported by the fact that the GSCPI is constructed as the first principal com-
ponent of several monthly indicators of transportation costs such as the Baltic Dry
Index, the Harpex index, and the Bureau of Labor Statistics airfreight cost indexes
and supply chain-related components from the Purchasing Managers’ Index surveys
for manufacturing firms. The principal component effectively smooths out idiosyn-
cratic variability, helping to isolate the “slow-moving” component. Furthermore, the
GSCPI is a global index, and despite the EA being a sizable fraction of the world’s
economy, several shocks in the GSCPI are likely to originate outside of it. Finally,
we obtain that the reduced-form residuals of GSCPI are almost uncorrelated with
the other residuals, supporting our contemporaneous exogeneity assumption.

Oil price shocks. We also emphasize the importance of oil prices, which exhib-
ited a dramatic increase starting from mid-2021 and further acceleration in early
2022 due to the Ukraine War (see Guerrieri et al., 2023). To instrument crude oil
prices, we construct high-frequency oil price shocks by computing daily surprises in
oil futures prices around OPEC announcements, closely following Känzig (2021a)
and extending the sample. The core idea is that these announcements can pro-
vide exogenous variation in oil prices by revealing unexpected information about

33The Global Supply Chain Pressure Index (GSCPI) is maintained by the Federal Reserve Bank
of New York and is not specific for the Euro Area, as it focuses on manufacturing firms across
seven interconnected economies: China, the Euro Area, Japan, South Korea, Taiwan, the United
Kingdom, and the United States. However, given the interconnections of the Euro Area supply
chain and the global nature of the inflation surge, it is also a good indicator of supply chain
disruptions that affect inflation in the Euro Area.
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oil production plans, thereby surprising financial market operators. Specifically, we
compute daily surprises in Brent futures around OPEC press releases, as described
in Eq 3.1.1, considering future contracts spanning from a one-month to a one-year
horizon. Subsequently, we capture the daily oil supply shock by extracting the first
principal component of these surprises. To aggregate the shocks into a monthly se-
ries, we sum the daily surprises within the respective month. Figure C26 shows the
oil supply surprise series, and the corresponding West Texas Intermediate (WTI) oil
surprise series can be found in Appendix Figure C27.

Monetary policy shocks. We also identify monetary policy shocks via an exter-
nal high-frequency instrument approach. For monetary policy surprises we use the
shocks to conventional monetary policy using as instruments surprises as computed
by Altavilla et al. (2019). We then follow Ricco et al. (2024) and correct for non-
linear information effects. The general idea is to consider that part of the monetary
policy surprise that is orthogonal to both the central bank’s economic projections
and to past market surprises.
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Appendix C Data and descriptive statistics

C.1 Data sources

Table C3 provides details on the data used, including information on the data
sources, the time coverage, and the transformations applied.
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Table C3: Data description and sources
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C.2 Gas Balances in the Euro Area and United States

This appendix presents data on the gas balances in both the Euro Area and the
United States over time. It includes natural gas production, consumption, imports,
exports, and storage levels.
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Figure C16: Gas Balances for the Euro Area and United States

Notes: All figures are expressed in Petajoules and seasonally adjusted. Sources: In-
ternational Energy Agency (IEA) and the Energy Information Administration (EIA).
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Region Production Consumption Imports Exports Stocks

Euro Area 271 1216 1033 100 2616

United States 2354 2401 301 246 2896

Table C4: Gas balances for the Euro Area and United States, averages
(Petajoules) over the sample.

C.3 Additional data not used in the analysis
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Figure C17: Natural gas imports and exports

Notes: The left panel shows natural gas imports and exports for the EU (1990-2022),
and the right panel for the US (1990-2024). Values are in exajoules. Sources: Eurostat
and EIA.
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Figure C18: Crude oil imports and exports

Notes: The left panel shows crude oil imports and exports for the EU (1990-2022),
and the right panel for the US (1990-2024). Values are in exajoules. Sources: Eurostat
and EIA.
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Figure C19: Energy import dependency

Notes: The left panel shows the EU import dependency on gas and oil (1990-2020),
and the right panel shows the US import dependency (1990-2021). Import dependency
is calculated as the share of net imports over total consumption of each energy product.
Sources: Eurostat, EIA, Energy Institute.
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Figure C20: Natural gas consumption by sector

Notes:The left panel illustrates the sectoral distribution of natural gas consumption in
the Euro Area (EA), while the right panel presents the corresponding breakdown for
the United States (US). Both figures represent average consumption patterns over the
period 2004–2022. Total consumption encompasses deliveries to the power generation,
industrial, commercial, residential, and transportation sectors. Source: International
Energy Agency.

C.4 Correlation of TTF and other European gas prices

This Appendix provides evidence demonstrating that the Dutch TTF spot price
is reflective of the overall dynamics of natural gas prices in Europe.

Figure C21 shows the natural gas spot prices at selected EA trading hubs: the
Italian European Gas Network (EGN), the British Greater Buchan Area (GBA), the
Spanish Mercado Ibérico del GAS (MIBGAS), the British National Balancing Point
(NBP), the German NetConnect Germany (NCG), the French Point d’échange de
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Gaz (PEG), the Italian Punto di Scambio Virtuale (PSV), the Austrian Virtual
Trading Point (VTP), and the Belgian Zeebrugge Trade Point (ZTP). These prices
closely followed the TTF not only in the period before the pandemic but also amidst
the subsequent market disruptions. Exceptions to this trend are exceedingly rare
but significant, as seen in the spikes recorded at the end of 2017 and the beginning
of 2018 in the PSV price, which did not correspond to movements in the TTF series.

Table C5 quantifies the comovement between TTF and these gas prices. The
correlations are very high, ranging from 0.934 for the British NBP to 0.998 for NCG.
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Figure C21: TTF and other European gas prices.

Notes: This figure displays the daily Dutch TTF spot price alongside spot prices from
other European trading hubs.

Hub price TTF
NCG 1.00
VTP 1.00
PSV 1.00
ZTP 0.97
EGN 0.98
NBP 0.93
GBA 1.00
PEG 0.97
MIBGAS 0.97

Table C5: Correlation between TTF and other EA gas prices.

Notes: This table reports the correlation between the Dutch TTF spot price and spot
prices of natural gas at various European trading hubs.

63



Finally, we show that as LNG became more relevant in the EA over the past few
years, its price almost matched the dynamics of the TTF price. This can be observed
in Figure C22 , while Figure C23 displays a sliding window correlation of the global
LNG price with the TTF.
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Figure C22: TTF, HH and Global LNG prices.

Notes: The figure displays the monthly spot price of TTF alongside the Henry Hub
(HH) and the global LNG benchmark price.
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Figure C23: TTF and Global LNG gas prices correlation.

Notes: The Figure displays the sliding-window correlation of the TTF and the Global
LNG gas prices. Sliding-window of 24 months.
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C.5 US instruments
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Figure C24: The US gas supply surprises series.
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Figure C25: Temperature shocks series for the US.
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C.6 Brent and WTI oil surprises
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Figure C26: The Brent oil supply surprises series

Notes: This figure shows the oil surprise series, which is constructed as the first
principal component from changes in gas futures prices. We use Brent crude oil future
contracts spanning the first-year term structure around OPEC announcements. The
series is scaled to match the average volatility of the underlying price surprises. See
Känzig (2021a).
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Figure C27: The WTI oil supply surprises series

Notes: This figure shows the oil surprise series constructed as the first principal
component from changes in WTI gas futures prices.
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Appendix D Market-relevant gas supply news

This appendix presents some illustrative examples of news events used to con-
struct gas supply surprises, as detailed in Section 3.1.1.

Date Event daily %∆ (PC)

EA
2009-01-06 Russia halts gas deliveries to Ukraine amid escalating gas dispute. 12.1
2010-10-28 UK Expands LNG Capacity at the Isle of Grain terminal. -1.3
2010-11-15 Unexpected drop in flows from Norway through Langeled pipeline. 3.4
2014-03-03 Gazprom threatens to cut gas exports amid the Crimea crisis. 5.7
2019-04-05 Pipeline blast reduces Russian gas supplies to Bulgaria by 60% 11.5
2020-08-03 Polish anti-monopoly UOKiK fines Gazprom over Nord Stream. 19.8
2021-10-28 Putin announces Gazprom ready to start pumping natural gas into European gas storage. -9.9
2022-02-25 Auction result shows flows might resume via Yamal pipeline. -28.3
2022-03-02 Supply fears peak amid Russia-Germany dispute over NS2, following invasion of Ukraine. 26.6
2022-06-14 Gazprom announces reduced supply through Nord Stream 1 due to repair works. 12.8
2022-06-15 Gazprom announces further reduction in gas flows through Nord Stream 1. 12.2

US
2009-06-15 Kinder Morgan announces maintenance on natural gas Pipeline Co. of America Mainline. 4.6
2012-07-24 Pipeline constraints limit supply in the Gulf Coast. 2.1
2012-09-21 Force Majeure at Julesburg compressor station. 3.2
2013-11-01 Transco begins full service on Northeast Supply Link project. -2.0
2014-02-13 Columbia Gulf transmission pipeline shuts following explosion in Kentucky. 1.7
2014-09-15 Explosion at Chevron gas pipeline. 2.1
2017-05-10 FERC bans new drilling along Rover pipeline. 1.6
2022-06-08 Blast hits Freeport LNG plant, disrupting operations. -4.5
2023-03-08 Unexpected flows drop at Freeport LNG related to outages. -3.1
2023-06-30 Restrictions at Oxford and Stony point compressors amid maintenance. 2.6

Table D6: Selected gas supply news for EA and US.

67



Oct 
21

Oct 
22

Oct 
23

Oct 
24

Oct 
25

Oct 
26

Oct 
27

Oct 
28

Oct 
29

Oct 
30

Oct 
31

Nov
 0

1

Nov
 0

2

Nov
 0

3

Nov
 0

4

Nov
 0

5

17.5

18.0

18.5

19.0

E
U

R
 / 

M
W

h

Figure D28: UK expands LNG capacity at the Isle of Grain terminal.

Notes: The figure shows the surprise in the TTF spot gas price following the expansion
of the LNG capacity at the Isle of Grain in the UK on October 28, 2010. October 23,
24, 30, and 31 were non-trading days for which the close spot price is not available.
The values shown for these dates correspond to the last available trading day.
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Figure D29: Gazprom announces reduced supply through Nord Stream 1
due to repair works.

Notes: The figure shows the surprise in the TTF spot gas price related to the an-
nouncement by Gazprom of reduced flows through NS1 on June 14, 2022. In this case,
two related announcements were made on consecutive days, with Gazprom announc-
ing a further reduction on the second day. June 11, 12, 18, and 19 were non-trading
days for which the close spot price is not available. The values shown for these dates
correspond to the last available trading day.
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Figure D30: Kinder Morgan announces maintenance.

Notes: The figure shows the surprise in the HH spot gas price related to maintenance
on the Natural Gas Pipeline Co. of America’s mainline at Compressor Station 198 in
Marion County, Iowa. This maintenance resulted in a 75% reduction in capacity in
the area on June 15, 2009. June 13 and 14 were non-trading days for which the close
spot price is not available. The values shown for these dates correspond to the last
available trading day.

Appendix E Diagnostics of the gas surprise series

In this appendix, we perform additional validity checks on the gas supply surprise
series.

We start by evaluating the predictability of the surprise series. As shown in
Table E7, results from Granger’s causality tests suggest that the series cannot be
predicted by past macroeconomic or financial variables. Similarly, the series shows no
forecastability when considering gas demand and gas inventories. Moreover, we look
at the correlation between the series and other shocks from the literature (see Table
E8). Notably, we find that the series is not significantly correlated with oil-specific,
uncertainty, and global demand shocks.
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Figure E31: Sample Autocorrelation Function of the gas surprise series.

Variable p-value EA p-value US
Instrument Lags 0.22 0.92
Gas price 0.45 0.71
Oil price 0.38 0.95
Gas demand 0.60 0.89
Gas inventories 0.32 0.83
Headline inflation 0.77 0.81
Industrial production 0.13 0.90
Financial volatility 0.25 0.86
Interest rate 0.69 0.97
Nominal exchange rate 0.66 0.98
Stock market (STOXX50E/SP500) 0.11 0.59
Supply Chain Bottlenecks (GSCPI) 0.22 0.85
Real economic activity 0.51 0.98
Joint Test 0.14 0.99

Table E7: Granger causality tests

Notes: The table presents the p-values obtained from Granger’s causality tests of the
gas supply surprise series using the set of variables included in our baseline speci-
fication, expanded with financial and real activity variables. To conduct standard
inference, the series are rendered stationary by taking first or second differences as
required. The analysis includes 12 lags and a constant term.
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Source Shock Europe supply Europe demand US supply US demand n
ρ p-value ρ p-value ρ p-value ρ p-value

Kilian (2009)** Oil supply -0.02 0.79 -0.01 0.87 0.04 0.56 0.04 0.52 240
Kilian (2009)** Aggregate demand -0.07 0.31 0.01 0.83 0.02 0.77 -0.07 0.29 240
Kilian (2009)** Oil-specific demand 0.05 0.42 -0.08 0.25 0.01 0.84 -0.05 0.44 240
Baumeister and Hamilton (2019)* Oil supply -0.06 0.36 0.03 0.67 -0.04 0.57 0.02 0.73 240
Baumeister and Hamilton (2019)* Oil demand 0.00 0.99 -0.05 0.45 0.09 0.16 -0.04 0.51 240
Känzig (2021a)** Oil supply expectations -0.08 0.20 -0.03 0.70 0.02 0.82 0.12 0.07 240
Caldara et al. (2019)* CCI oil supply 0.02 0.77 0.01 0.87 0.01 0.87 0.01 0.88 144
Miranda-Agrippino and Nenova (2022) Target monetary policy (EA) 0.07 0.33 0.03 0.63 -0.05 0.51 0.02 0.73 207
Jarociński and Karadi (2020) Information median monetary policy (EA) -0.01 0.89 0.07 0.30 0.02 0.70 0.08 0.24 234
Gertler and Karadi (2015) FF4 monetary policy (US) -0.13 0.20 -0.14 0.15 -0.01 0.97 0.02 0.87 102
Miranda-Agrippino and Nenova (2022) Target monetary policy (US) 0.02 0.74 -0.02 0.75 0.01 0.88 0.02 0.82 186
Bloom (2009)** VXO-VIX -0.03 0.70 0.03 0.60 0.00 0.99 0.06 0.38 240
Gilchrist and Zakraǰsek (2012)* Corporate credit spread index 0.05 0.49 -0.05 0.43 -0.04 0.60 -0.06 0.33 240
Caldara and Iacoviello (2022)* Geopolitical risk index 0.05 0.40 0.05 0.46 0.04 0.51 0.06 0.38 240

Table E8: Correlation of instruments with other shocks.

Notes: This table presents the correlation coefficients (ρ) and p-values for the EA and
US supply and demand instruments in relation to a variety of economic shocks from
the literature. The p-values correspond to two-sided tests for the null hypothesis of
no correlation. The sample size (n) varies across shocks, as some are unavailable or
not easily extendable to our full sample (2004-2023).

*Extended by the original authors beyond the original sample used in the published paper.
**Extended by the authors of this study.
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Figure E32: Supply and demand instruments strength.

Notes: The figure shows how the gas and demand instruments are related to the
reduced form residuals of our baseline specification. All three series are rescaled to
have unit variance for comparability. The top panel corresponds to Europe, and the
bottom panel corresponds to the USA.
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Appendix F Construction of the Temperature De-

mand Instrument

ERA5 surface temperature data. The daily temperature data are taken from
ERA5’s single levels dataset, the fifth-generation atmospheric reanalysis produced
by the European Centre for Medium-Range Weather Forecasts. Weather data from
ERA5 (Hersbach et al., 2020) at a regular latitude-longitude grid of 0.25 is taken
from the reanalysis era5 single levels dataset. Average daily temperature corresponds
to the 2m temperature (daily mean) variable. To aggregate the grid-level data to
the country level we employ the Database of Global Administrative Areas (GADM),
using the first level of resolution GADM0.3435

Temperature shock series computation. The monthly temperature shock is
computed as described in Equation F.0.1. First, daily average temperatures are
seasonally adjusted by subtracting to every calendar day the mean monthly aver-
age temperature (across all years in the sample) corresponding to the month where
the calendar day is located. Figure F33 shows the seasonally adjusted series for
the Netherlands as an example. The resulting series is aggregated from daily to
monthly by taking temporal averages. Finally, the series is thresholded to isolate
only months with large temperature deviations by setting to zero any observation
within a standard deviation.

TSm,y =

{
SAKstat

m,y , if SAKstat
m,y ̸∈ [µKSA − σKSA ;µKSA + σKSA ]

0, otherwise
(F.0.1)

where

• Kh,d,m,y denotes hourly temperature, where h ∈ {1, 2, . . . , 24} indexes hours,
d ∈ {1, 2, . . . , Dm} indexes days (with Dm being the index of the last day in
month m), m ∈ {1, 2, . . . , 12} indexes months, and y ∈ {y0, y1, . . . , Y } indexes
years;

• Kstat
d,m,y ≡ f({Kh,d,m,y}24h=1) is a daily statistic computed on hourly observa-

tions. In our baseline exercise, we consider KAvg
d,m,y =

24∑
h=1

Kh,d,m,y/24: daily

average temperatures. Other options available in the ERA5 dataset include
KMin
d,m,y = min({Kh,d,m,y}24h=1) and KMax

d,m,y = max({Kh,d,m,y}24h=1): daily mini-
mum and daily maximum temperatures, respectively;

• Kstat
d,m denotes averages across years ofKstat

d,m,y. We considerKstat
m =

Y∑
y=y0

Dm∑
d=1

Kstat
d,m,y

(Y−y0)Dm
,

the calendar month average.

34https://gadm.org/.
35When using U.S. temperature data we average across all U.S. states and aggregate at the second

resolution level GADM1.
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• SAKstat
d,m,y = Kstat

d,m,y − Kstat
m is the daily temperature statistic seasonally ad-

justed by subtracting the calendar month average;

• SAKstat
m,y =

Dm∑
d=1

SAKAvg
d,m,y

Dm
is the daily seasonally adjusted statistic aggregated to

monthly by taking averages across all days in the month;

• µKSA =

Y∑
y=y0

12∑
m=1

SAKstat
m,y

(Y−y0)12 and σKSA =

√
Y∑

y=y0

12∑
m=1

(SAKstat
m,y−µKSA)

(Y−y0)12−1
are the mean and

the standard deviation of monthly the seasonally adjusted temperature statis-
tic, respectively.
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Figure F33: Daily temperatures for the Netherlands, seasonally adjusted
by subtracting the long-term calendar month averages, not detrended.

We have explored several alternative methods for computing the temperature
shock series, all of which yield very similar temperature shock series to which our
findings are robust. These robustness checks are available upon request. One ap-
proach involves removing a linear trend from the temperature series before applying
seasonal adjustments. Another method adjusts for seasonality by subtracting the
mean temperature for each calendar day, computed across all years in the sample,
rather than using calendar month averages, though this tends to introduce more
noise. Additionally, the index can be constructed using daily maximum or minimum
temperatures instead of daily averages. An alternative weighting scheme incorpo-
rates demographic or geographic factors, such as night lights (Gortan et al., 2024),
to refine the temperature series. Finally, a rolling seasonal adjustment can be imple-
mented, where the reference means for adjustment are computed based on a moving
window of preceding years.

The months excluded from the demand instrument due to confounding factors
are the following. For Europe: 2006M1 (Russia cut gas supplies to Ukraine, following
negotiations between Gazprom and Naftogaz), 2009M1 (Russia cut gas deliveries to
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Europe amid escalating Russia-Ukraine gas dispute), 2011M12 (Turkey-Russia deal
over South Stream pipeline), 2014M3 (Crimea crisis), 2015M11 (Gazprom halts gas
supplies to Ukraine), 2020M2 (COVID-19 pandemic), 2022M2 (Invasion of Ukraine),
2022M8 (Turbine maintenance at Nord Stream 1), 2022M11 (Outages in Norway and
delays in restart of Freeport LNG), and 2023M10 (Conflict in the Middle East). For
the United States: 2005M11 (Gas production and transport resumes after Hurricane
Katrina), 2007M10 (Tropical Storms), 2014M2 (Major pipeline explosion), 2020M3
(COVID-19 pandemic), 2020M11 (Hurricane Eta), 2021M2, M3 and 2023M2(Storms
that disrupted natural gas pipelines and shut down oil refineries), and 2023M10 (Re-
opening of major LNG terminal).

Figure F34 demonstrates that the anticipation effects of temperature fluctua-
tions on natural gas prices are likely minimal. The top-left panel illustrates the
correlation between daily temperatures and daily natural gas prices, revealing that
the strongest (negative) correlation occurs contemporaneously. This indicates that
price movements are primarily driven by actual temperature realizations rather than
expectations about future temperatures. Additionally, the temporal correlation of
daily temperatures can explain the presence of some correlations in lead terms with-
out necessarily implying anticipation effects. In practice, forecasting average tem-
peratures over a period may be more common than predicting daily temperatures
with precision. However, the other panels show that even when considering the av-
erage temperature over several subsequent days, the strongest correlations remain
contemporaneous. Overall, this analysis suggests that anticipation effects on natural
gas prices, if present, are quite limited.
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Figure F34: Temperatures and gas price correlations.

Notes: The Figure plots the correlations at several leads and lags of the TTF spot
price of natural gas and average temperatures. The different panels plot temperature
averages of different temporal span.
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Figure F35: Cooling degree days and heating degree days, average across
selected European countries.
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Figure F36: Sample Autocorrelation Function of the Temperature Shocks.
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Appendix G Main results grouped together

Industrial Production Financial Volatility Oil Price
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Figure G37: Full responses to a gas demand shock. Left panels of Figures
6 to 9 grouped together.
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Figure G38: Full responses to a gas supply shock. Right panels of Figures
6 to 9 grouped together.
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Appendix H Additional results

H.1 Demand and Supply elasticities
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0 10 20 30

0.0

0.5

1.0

1.5

Months

Gas Net Imports

0 10 20 30

0

1

2

Months

Nominal Exchange Rate

0 10 20 30
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

Months

Figure H39: Drivers of gas supply.

Notes: Impulse responses of gas production in the United States, as well as net imports
and the nominal exchange rate in the Euro Area, following a gas demand shock. These
results are derived from the baseline specification, replacing total supply with gas
production for the United States, and with gas net imports and the nominal exchange
rate for the Euro Area. An decrease in the exchange rate indicates a depreciation in
nominal terms.
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Figure H40: Interfuel substitution in the US power Sector.

Notes: Impulse responses of natural gas and crude oil consumption by the power
sector to a gas demand shock in the US. These results are derived from the baseline
specification, augmented with gas and oil consumption by the power sector.
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H.2 Effects of a gas supply shock in Germany

GNE Consumption Investment

Industrial Production Financial Volatility Unemployment Rate

Gas Demand Gas Inventories Headline Inflation
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Figure H41: Impulse responses to a gas supply shock: German economy.

Notes: GNE, consumption, and investment are quarterly variables interpolated to
monthly using a cubic spline interpolation.
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H.3 PPI Inflation in the EA
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Figure H42: Producer price and consumer price inflation.

Notes: Impulse responses of producer price inflation and headline consumer price
inflation to a gas supply shock in the EA. These results are derived from the baseline
specification augmented with the PPI series.

H.4 Aggregate Demand Channel in the EA

Gas supply price shocks appear to have limited and short-lived real effects, as
discussed in Section 4. This conclusion is further supported by additional economic
indicators. Figure H43 shows that neither real Gross National Expenditure (GNE)
nor the unemployment rate exhibit significant responses. In contrast, consumer
spending and investment experience a modest decline, as households and firms re-
allocate expenditures in response to rising energy prices (Hamilton, 2023). One
interpretation is that these effects remain relatively contained and do not trigger
substantial cascading impacts at the aggregate level. However, these results should
be interpreted with caution, as national expenditure data are available only at the
quarterly frequency and have been interpolated to monthly values. In comparison,
oil price shocks tend to have a more pronounced effect on aggregate demand (Hamil-
ton, 2009; Känzig, 2021a). This difference is likely attributable to the relatively
lower share of natural gas in overall energy expenditures, which amounts to roughly
one-quarter of spending on petroleum products (Moll et al., 2023).
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Figure H43: Impulse responses of key economic activity indicators in the
euro area to a gas supply shock.

Notes: The figure shows the impulse responses of Gross National Expenditure (GNE),
the unemployment rate, consumption, and investment to a gas supply shock in the
euro area. The results are derived from the baseline model, augmented with the
four variables shown. GNE, consumption, and investment are quarterly variables
interpolated to monthly using a cubic spline interpolation.
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Appendix I Robustness checks

In this Appendix, we show that our results are robust to constructing an informa-
tionally robust gas supply instrument by controlling for several potential confound-
ing factors. We also demonstrate that our findings remain qualitatively consistent
regardless of the Bayesian priors imposed. We show this by estimating the same
specifications by VAR-OLS.

I.1 Informationally-robust surprises

To interpret the surprise series as an exogenous supply shock, it is crucial to
ensure that these events do not simultaneously convey new information about con-
founding factors, as this would compromise the exogeneity of the instrument. One
potential such confounder is food prices, which, in the context of the Russia-Ukraine
conflict, rose alongside natural gas prices (Ben Hassen and El Bilali, 2022; Alexander
et al., 2023). Given their broader macroeconomic implications, food price fluctua-
tions could introduce an alternative transmission channel unrelated to gas supply
shocks. More generally, some gas market-specific news events used to construct the
surprise series may have broader economic consequences, potentially influencing en-
dogenous variables through channels beyond natural gas prices. If such alternative
transmission mechanisms are present, the exclusion restriction could be violated.

To address these concerns, we construct an informationally-robust gas supply se-
ries, drawing from a strategy typically applied in the monetary policy literature that
isolates the informational component of the surprises in gas futures by directly con-
trolling for potential confounding factors (e.g. Romer and Romer, 2004; Nakamura
and Steinsson, 2018; Miranda-Agrippino and Ricco, 2021). Following this approach,
we refine the gas supply series by removing its own lagged effects as well as the
contemporaneous and lagged effects of potential confounding factors. More specifi-
cally, we recover the informationally-robust surprises, IRSt, as the residuals of the
following regression:

GasSurpriseht = α0+
2∑
j=1

ϕjGasSurpriseht−j+
2∑
j=0

θjFoodSurprise
h
t−j+

2∑
j=0

xt−jΓj+IRSt

where GasSurpriseht denotes the gas supply surprise in month t for the futures
contract h, constructed as detailed previously. Similarly, FoodSurpriseht represents
the surprise in food prices constructed around the same gas-related news. To con-
struct food surprises, we use the price of wheat as a proxy for overall food prices,
as this was the main export from Russia (OECD, 2022), and it is the most actively
traded food commodity (CME, 2024).36

Finally, xt is a vector of monthly macroeconomic shocks sourced from the liter-
ature. These include the global oil supply shock proposed by Kilian (2009), which

36We use Matif wheat futures for the Euro Area and Hard Red Winter wheat futures for the
United States.
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captures disruptions in the physical availability of crude oil worldwide, as well as
the oil-specific demand shock and aggregate demand shock from the same study.
Additionally, we incorporate oil supply and demand shocks from Baumeister and
Hamilton (2019) and supply surprises in oil prices identified by Känzig (2021a). The
uncertainty indicators considered span multiple domains, including geopolitical and
financial market conditions. Specifically, we include the policy uncertainty index
developed by Baker et al. (2016), the geopolitical risk index introduced by Caldara
and Iacoviello (2022), the stock market volatility index from Bloom (2009), and the
excess bond premium constructed by Gilchrist and Zakraǰsek (2012).37
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Figure I44: Informationally-robust gas surprises series for the Euro Area.

Notes: This figure shows the gas surprise series (blue line) alongside the
informationally-robust surprises, residual to Eq. I.1 IRSt (yellow line).

Figure I44 plots the gas surprise series at the monthly frequency (GasSurpriset)
and the corresponding informationally-robust instrument (IRSt). The two series are
qualitatively similar and yield quantitatively similar results. Figure I45 presents the
IRFs from the baseline specification using the informationally robust instrument.
The responses closely align with those reported in the main analysis, exhibiting only
minor and statistically insignificant differences. This suggests that informational
confounding does not significantly impact our high-frequency gas surprises.

37These shock series are either taken directly from the original studies or extended where neces-
sary, adhering closely to the methodologies outlined in the original papers.
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First stage regressions: EA F: 13.28, Robust F: 15.75; US F: 8.96, Robust F: 18.11

Figure I45: Impulse responses to a gas supply shock, informationally-
robust refinement. Equivalent of right panels of Figures 6 to 9.

Notes: Impulse responses to a gas supply shock in the Euro Area and the United States
informationally-robust refinement. The black solid lines with blue shaded confidence
bands represent the EA, while the orange solid lines with dashed and shaded orange
confidence bands represent the US.
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I.2 Estimation by VAR-OLS

Industrial Production Financial Volatility Oil Price
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Figure I46: Responses to a gas demand shock, estimated by VAR-OLS.
Equivalent of left panels of Figures 6 to 9.

Industrial Production Financial Volatility Oil Price

Gas Price Gas Demand Gas Stocks Headline Inflation

0 10 20 30 0 10 20 30 0 10 20 30

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

0.0

0.2

0.4

0.6

−2

−1

0

1

−2

0

2

4

−1.0

−0.5

0.0

0.5

1.0

−2.5

0.0

2.5

5.0

7.5

0

4

8

12

−0.6

−0.3

0.0

0.3

Months

Figure I47: Responses to a gas supply shock, estimated by VAR-OLS.
Equivalent of right panels of Figures 6 to 9.
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